留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于衍射光栅的高精度干涉星敏感器的理论分析

张淑芬 姜珊 董磊 王建立 吴娜 李文昊

张淑芬, 姜珊, 董磊, 王建立, 吴娜, 李文昊. 基于衍射光栅的高精度干涉星敏感器的理论分析[J]. 中国光学(中英文), 2021, 14(6): 1368-1377. doi: 10.37188/CO.2021-0051
引用本文: 张淑芬, 姜珊, 董磊, 王建立, 吴娜, 李文昊. 基于衍射光栅的高精度干涉星敏感器的理论分析[J]. 中国光学(中英文), 2021, 14(6): 1368-1377. doi: 10.37188/CO.2021-0051
ZHANG Shu-fen, JIANG Shan, DONG Lei, WANG Jian-li, WU Na, LI Wen-hao. High accuracy interferometric star tracker based on diffraction grating[J]. Chinese Optics, 2021, 14(6): 1368-1377. doi: 10.37188/CO.2021-0051
Citation: ZHANG Shu-fen, JIANG Shan, DONG Lei, WANG Jian-li, WU Na, LI Wen-hao. High accuracy interferometric star tracker based on diffraction grating[J]. Chinese Optics, 2021, 14(6): 1368-1377. doi: 10.37188/CO.2021-0051

基于衍射光栅的高精度干涉星敏感器的理论分析

基金项目: 科技部重点研发计划资助项目(No. 2018YFF01011000);国家自然基金资助项目(No. 61905244);广东省重点领域研发计划项目(No. 201913010144001);吉林省与中国科学院科技合作高技术产业化专项资金项目(No. 2020SYHZ0033)
详细信息
    作者简介:

    张淑芬(1996—),女,山东滨州人,硕士研究生,2018年于鲁东大学获得学士学位,主要从事星敏感器光学设计方面的研究。E-mail:zzsf1066@163.com

    李文昊(1980—),男,内蒙古赤峰人,博士,研究员,2002年于陕西科技大学获学士学位,2008年于中国科学院长春光学精密机械与物理研究所获博士学位,主要从事平面、凹面全息光栅的理论设计及制作工艺等方面的研究。E-mail:leewenho@163.com

  • 中图分类号: O436

High accuracy interferometric star tracker based on diffraction grating

Funds: Supported by National Key R&D Program of China (No. 2018YFF01011000); National Natural Science Foundation of China (NSFC) (No. 61905244); Research and Development Project in Key Areas of Guangdong Province (No. 201913010144001); Special Fund Project of High-Tech Industrialization for Science and Technology Cooperation Between Jilin Province and Chinese Academy of Sciences (No. 2020SYHZ0033)
More Information
  • 摘要: 为克服传统星敏感器精度与视场、体积、质量等参数难以兼顾的问题,本文研究了一种基于衍射光栅的高精度干涉星敏感器结构。利用角谱理论,建立了星光入射角度与探测器上像点质心位置、像点能量之间的数学模型,确定了干涉星敏感器利用像点质心位置和相对能量分别进行粗定位和精定位的方法及粗精定位结合获得星光入射角度的方法,得出干涉星敏感器单星测量角分辨率和光栅周期、两块光栅之间的距离及像点光强信号电子学细分倍数有关的结论。通过计算机仿真模拟,验证了干涉星敏感器精定位及粗精定位结合的可行性。在光栅周期为50 μm,两块光栅距离为50 mm,像点光强信号每变化一个周期采用1024倍电子学细分的情况下,单星测量角分辨率达0.1″,与传统星敏感器相比精度有显著提高。

     

  • 图 1  基于一维光栅的干涉星敏感器光学系统结构图

    Figure 1.  Configuration of interferometric star tracker optical system based on 1-D grating

    图 2  干涉星敏感器靶面坐标系x'O'y'和干涉星敏感器坐标系O-xyz间的关系

    Figure 2.  Relationship of target plane coordinate system x'O'y' and the coordinate system O-xyz of the interferometric star tracker

    图 3  视场内3颗星在干涉星敏感器上的成像

    Figure 3.  Star pattern generated for three stars within the field of view

    图 4  像点光强随星光入射角θx变化曲线

    Figure 4.  Intensity of four spots changing with the incident angle θx

    图 5  φ随星光入射角θx的变化

    Figure 5.  φ changing with the incident angle θx

    图 6  小角度下φ随星光入射角θx的变化

    Figure 6.  φ changing with the small incident angle θx

    图 7  单个星体在探测器上的星图

    Figure 7.  Star pattern from one star on the detector

  • [1] 刘鹏. CCD星敏感器关键技术的研究[D]. 哈尔滨: 哈尔滨工业大学, 2012.

    LIU P. Research on key technologies of CCD star sensor[D]. Harbin: Harbin Institute of Technology, 2012. (in Chinese).
    [2] 王晓东. 大视场高精度星敏感器技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2003.

    WANG X D. Study on wild-field-of-view and high-accuracy star sensor technologies[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2003. (in Chinese).
    [3] 赵阳. 新型反射式星敏感器光学系统设计[D]. 哈尔滨: 哈尔滨工业大学, 2007.

    ZHAO Y. New type reflective optical system design for a star sensor[D]. Harbin: Harbin Institute of Technology, 2007. (in Chinese).
    [4] XU B T, LV J H, ZHOU X L, et al. Design and analysis of a star simulator suitable for confined space[J]. IOP Conference Series:Materials Science and Engineering, 2019, 504: 012088. doi: 10.1088/1757-899X/504/1/012088
    [5] SARVI M N, ABBASI-MOGHADAM D, ABOLGHASEMI M, et al. Design and implementation of a star-tracker for LEO satellite[J]. Optik, 2020, 208: 164343. doi: 10.1016/j.ijleo.2020.164343
    [6] 吴卫. 高精度星敏感器结构设计和分析[D]. 西安: 中国科学院研究生院(西安光学精密机械研究所), 2010.

    WU W. Structural design and analysis of high accuracy star sensor[D]. Xi’an: Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, 2010. (in Chinese).
    [7] 李璟, 杨宝喜, 胡中华, 等. 星敏感器光学系统的研制与性能测试[J]. 光学学报,2013,33(5):0522005. doi: 10.3788/AOS201333.0522005

    LI J, YANG B X, HU ZH H, et al. Development and performance testing of optical system for star sensor[J]. Acta Optica Sinica, 2013, 33(5): 0522005. (in Chinese) doi: 10.3788/AOS201333.0522005
    [8] 柴毅. 基于多敏感器的卫星在轨高精度姿态确定技术研究[D]. 哈尔滨: 哈尔滨工程大学, 2018.

    CHAI Y. Research on high accuracy attitude determination methods for on-orbit satellite based on multiple sensors[D]. Harbin: Harbin Engineering University, 2018. (in Chinese).
    [9] 梁斌, 朱海龙, 张涛, 等. 星敏感器技术研究现状及发展趋势[J]. 中国光学,2016,9(1):16-19. doi: 10.3788/co.20160901.0016

    LIANG B, ZHU H L, ZHANG T, et al. Research status and development tendency of star tracker technique[J]. Chinese Optics, 2016, 9(1): 16-19. (in Chinese) doi: 10.3788/co.20160901.0016
    [10] 王红睿, 李会端, 方伟. 航天太阳敏感器的应用与发展[J]. 中国光学,2013,6(4):481-489.

    WANG H R, LI H D, FANG W. Application and development of space sun sensors[J]. Chinese Optics, 2013, 6(4): 481-489. (in Chinese)
    [11] PHAM N V B, NGUYEN T N, NGO T D, et al. A novel approach for pivot-based sensor fusion of small satellites[J]. Physical Communication, 2021, 45: 101261. doi: 10.1016/j.phycom.2020.101261
    [12] 王军. 高动态星敏感器关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019.

    WANG J. Research on key technologies of highly dynamic star sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019. (in Chinese).
    [13] WANG X Y, ZHENG R, WU Y P, et al. Study on the method of precision adjustment of star sensor[J]. Nanotechnology and Precision Engineering, 2018, 1(4): 248-257. doi: 10.1016/j.npe.2018.12.001
    [14] 王军, 何昕, 魏仲慧, 等. 基于区域滤波的模糊星图复原方法[J]. 中国光学,2019,12(2):321-331. doi: 10.3788/co.20191202.0321

    WANG J, HE X, WEI ZH H, et al. Restoration method for blurred star images based on region filters[J]. Chinese Optics, 2019, 12(2): 321-331. (in Chinese) doi: 10.3788/co.20191202.0321
    [15] 王凡, 常军, 郝云彩, 等. 高精度星敏感器星像能量分布模型研究[J]. 激光与光电子学进展,2015,52(5):051203.

    WANG F, CHANG J, HAO Y C, et al. Mathematical model research of star image energy distribution of star tracker[J]. Laser &Optoelectronics Progress, 2015, 52(5): 051203. (in Chinese)
    [16] 伍雁雄. 高精度星敏感器若干关键技术研究[D]. 长春: 中国科学院研究生院(长春光学精密机械与物理研究所), 2015.

    WU Y X. Study on several key technologies for high-accuracy star sensor[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2015. (in Chinese).
    [17] 唐圣金, 郭晓松, 周召发, 等. 星点亚像元定位中系统误差的改进补偿方法[J]. 红外与激光工程,2013,42(6):1502-1507. doi: 10.3969/j.issn.1007-2276.2013.06.021

    TANG SH J, GUO X S, ZHOU ZH F, et al. Modified systematic error compensation algorithm for star centroid sub-pixel detection[J]. Infrared and Laser Engineering, 2013, 42(6): 1502-1507. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.06.021
    [18] 谭迪, 张新, 伍雁雄, 等. 光学像差对星点质心定位误差的影响分析[J]. 红外与激光工程,2017,46(2):0217004. doi: 10.3788/IRLA201746.0217004

    TAN D, ZHANG X, WU Y X, et al. Analysis of effect of optical aberration on star centroid location error[J]. Infrared and Laser Engineering, 2017, 46(2): 0217004. (in Chinese) doi: 10.3788/IRLA201746.0217004
    [19] HANCOCK B R, STIRBL R C, CUNNINGHAM T J, et al. CMOS active pixel sensor specific performance effects on star tracker/imager position accuracy[J]. Proceedings of SPIE, 2001, 4284: 43-53. doi: 10.1117/12.426872
    [20] 孟祥月, 王洋, 张磊, 等. 大相对孔径宽光谱星敏感器光学镜头设计[J]. 红外与激光工程,2019,48(7):0718005. doi: 10.3788/IRLA201948.0718005

    MENG X Y, WANG Y, ZHANG L, et al. Lens design of star sensor with large relative aperture and wide spectral range[J]. Infrared and Laser Engineering, 2019, 48(7): 0718005. (in Chinese) doi: 10.3788/IRLA201948.0718005
    [21] 薛庆生. 折反式大口径星敏感器光学设计及杂散光分析[J]. 光学学报,2016,36(2):0222001. doi: 10.3788/AOS201636.0222001

    XUE Q SH. Optical design and stray light analysis for large aperture catadioptricstar sensor[J]. Acta Optica Sinica, 2016, 36(2): 0222001. (in Chinese) doi: 10.3788/AOS201636.0222001
    [22] WANG Y, ZHANG L, MENG X Y, et al. A large relative aperture and wide-spectrum star sensor optical lens design[J]. Proceedings of SPIE, 2018, 10964: 109642T.
    [23] BAI Y, LI J L, ZHA R W, et al. Catadioptric optical system design of 15-magnitude star sensor with large entrance pupil diameter[J]. Sensors, 2020, 20(19): 5501. doi: 10.3390/s20195501
    [24] LEE S, SALEEM R, LEE S S. Micro star tracker with a curved vane for a short baffle length and sharp stray light attenuation[J]. Applied Optics, 2020, 59(13): 4131-4142. doi: 10.1364/AO.380774
    [25] MURUGANANDAN V A, PARK J H, LEE S, et al. Development of the arcsecond pico star tracker (APST)[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, 2017, 60(6): 355-365. doi: 10.2322/tjsass.60.355
    [26] HUTCHIN R A. Interferometric tracking device: US, 8045178B2[P]. 2011-10-25.
    [27] DU J, BAI J, WANG L, et al. Optical design and accuracy analysis of interferometric star tracker[J]. Proceedings of SPIE, 2018, 10815: 1081504.
    [28] 杜娟, 白剑, 黄潇, 等. 基于二维光栅的双轴干涉星敏感器装置: 中国, 207600470U[P]. 2018-07-10.

    DU J, BAI J, HUANG X, et al. . Star sensor device is interfered to biax based on two -dimensional grating: CN, 207600470U[P]. 2018-07-10. (in Chinese).
    [29] 吕乃光. 傅里叶光学[M]. 2版. 北京: 机械工业出版社, 2016.

    LV N G. Fourier Optics[M]. 2nd ed. Beijing: China Machine Press, 2016. (in Chinese).
  • 加载中
图(7)
计量
  • 文章访问数:  1528
  • HTML全文浏览量:  493
  • PDF下载量:  153
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-10
  • 修回日期:  2021-03-26
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回