留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

二元计算全息法产生复杂无衍射光束

杨婧羽 任志君 黄文俊 许富洋

杨婧羽, 任志君, 黄文俊, 许富洋. 二元计算全息法产生复杂无衍射光束[J]. 中国光学(中英文), 2022, 15(1): 14-21. doi: 10.37188/CO.2021-0061
引用本文: 杨婧羽, 任志君, 黄文俊, 许富洋. 二元计算全息法产生复杂无衍射光束[J]. 中国光学(中英文), 2022, 15(1): 14-21. doi: 10.37188/CO.2021-0061
YANG Jing-yu, REN Zhi-jun, HUANG Wen-jun, XU Fu-yang. Complex non-diffraction beams generated using binary computational holography[J]. Chinese Optics, 2022, 15(1): 14-21. doi: 10.37188/CO.2021-0061
Citation: YANG Jing-yu, REN Zhi-jun, HUANG Wen-jun, XU Fu-yang. Complex non-diffraction beams generated using binary computational holography[J]. Chinese Optics, 2022, 15(1): 14-21. doi: 10.37188/CO.2021-0061

二元计算全息法产生复杂无衍射光束

基金项目: 国家自然科学基金资助项目(No. 11674288)
详细信息
    作者简介:

    杨婧羽(1998—),女,山西忻州人,硕士研究生,2019年于玉林师范学院获得学士学位,现就读于浙江师范大学光学工程专业。主要研究方向为激光束传输与变换。E-mail:1147963526@qq.com

    任志君(1974—),男,内蒙古呼和浩特人,现为浙江师范大学物理与电子信息工程学院教授,博士生导师。主要从事信息光学、激光技术、光谱技术等方面的研究。E-mail:renzhijun@zjnu.cn

  • 中图分类号: O436

Complex non-diffraction beams generated using binary computational holography

Funds: Supported by National Natural Science Foundation of China (No. 11674288)
More Information
  • 摘要: 无衍射光束是一种能在自由空间稳定传输的光束。近来,一类具有复杂光学形态的无衍射光束被引入,比如马蒂厄光束、抛物光束、非对称贝塞尔光束等。为了产生具有复杂结构的无衍射光束,需要对光波进行复振幅调制,即同时调制光波的振幅和相位。但目前的商用光学调制元件只能调制光波的振幅或相位。本文基于二元计算全息法,编码二维复透过率函数分布,构建了具有复振幅调制功能的二元实振幅非负计算全息图。利用实验室自主研发的投影成像光刻系统,对银盐干板进行曝光处理,经显影、定影处理,将其加工为相应的振幅掩模板,用来产生精确的具有复杂结构的无衍射光束。以无衍射马蒂厄光束为例,采用罗曼型迂回相位编码方法,在全息图每个抽样单元内开一个矩形通光孔径,通过改变通光孔径的面积来对复值光波的振幅进行编码,通过改变通光孔径中心偏离抽样单元中心的距离,来对复值光波的相位进行编码。最终构建了两种产生马蒂厄光束的典型二元实振幅计算全息图,其像素数高达28000 pixel×28000 pixel。之后利用加工好的振幅掩模板,准确、方便、高效地产生了椭圆系数q=10,拓扑荷数m=0与m=1的第一种偶型马蒂厄光束,其他类型的马蒂厄光束可相应产生,这是一种光束形态多样、光束结构复杂的无衍射光束。实验结果证实,采用罗曼型迂回相位编码方法产生具有复杂结构的无衍射光束,有效避免了实验过程中分离的相位调制元件和振幅调制元件之间的对准误差,二元计算全息编码法是一种能用来调控产生复杂结构无衍射光束的新途径。

     

  • 图 1  不规则光栅的衍射效应

    Figure 1.  Diffraction effect of irregular grating

    图 2  抽样单元

    Figure 2.  Sampling cell

    图 3  构建马蒂厄光束二元全息图过程

    Figure 3.  The process of constructing a Mathieu beam binary hologram

    图 4  产生马蒂厄光束的二元计算全息图。(a) m=0, q=10; (b) m=1, q=10

    Figure 4.  Binary computer-generated hologram of a Mathieu beam. (a) m=0, q=10; (b) m=1, q=10

    图 5  放大后的计算机全息图部分结构

    Figure 5.  Computer-generated hologram

    图 6  掩模板实物图

    Figure 6.  Physical picture of the mask plate

    图 7  实验光路图

    Figure 7.  Optical path of experimental system

    图 8  采用掩模板产生的马蒂厄光束。(a) m=0, q=10; (b) m=1, q=10

    Figure 8.  Mathieu beam produced by the mask. (a) m=0, q=10; (b) m=1, q=10

    图 9  理论模拟产生的马蒂厄光束。 (a) m=0, q=10; (b) m=1, q=10

    Figure 9.  Mathieu beam generated through theoretical simulation. (a) m=0, q=10; (b) m=1, q=10

    图 10  采用振幅与相位分开调制产生的马蒂厄光束。 (a) m=0, q=10; (b) m=1, q=10

    Figure 10.  Mathieu beams produced by modulating amplitude and phase separately. (a) m=0, q=10; (b) m=1, q=10

  • [1] DURNIN J, MICELI JR J J, EBERLY J H. Diffraction-free beams[J]. Physical Review Letters, 1987, 58(15): 1499-1501. doi: 10.1103/PhysRevLett.58.1499
    [2] 娄岩, 陈纯毅, 赵义武, 等. 高斯涡旋光束在大气湍流传输中的特性研究[J]. 中国光学,2017,10(6):768-776. doi: 10.3788/co.20171006.0768

    LOU Y, CHEN CH Y, ZHAO Y W, et al. Characteristics of Gaussian vortex beam in atmospheric turbulence transmission[J]. Chinese Optics, 2017, 10(6): 768-776. (in Chinese) doi: 10.3788/co.20171006.0768
    [3] 卢腾飞, 张凯宁, 吴志军, 等. 椭圆涡旋光束在海洋湍流中的传输特性[J]. 中国光学,2020,13(2):323-332. doi: 10.3788/co.20201302.0323

    LU T F, ZHANG K N, WU ZH J, et al. Propagation properties of elliptical vortex beams in turbulent ocean[J]. Chinese Optics, 2020, 13(2): 323-332. (in Chinese) doi: 10.3788/co.20201302.0323
    [4] GUTIÉRREZ-VEGA J C, ITURBE-CASTILLO M D, CHÁVEZ-CERDA S. Alternative formulation for invariant optical fields: Mathieu beams[J]. Optics Letters, 2000, 25(20): 1493-1495. doi: 10.1364/OL.25.001493
    [5] BANDRES M A, GUTIÉRREZ-VEGA J C, CHÁVEZ-CERDA S. Parabolic nondiffracting optical wave fields[J]. Optics Letters, 2004, 29(1): 44-46. doi: 10.1364/OL.29.000044
    [6] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating Airy beams[J]. Physical Review Letters, 2007, 99(21): 213901. doi: 10.1103/PhysRevLett.99.213901
    [7] VASARA A, TURUNEN J, FRIBERG A T. Realization of general nondiffracting beams with computer-generated holograms[J]. Journal of the Optical Society of America A, 1989, 6(11): 1748-1754. doi: 10.1364/JOSAA.6.001748
    [8] ARLT J, DHOLAKIA K. Generation of high-order Bessel beams by use of an axicon[J]. Optics Communications, 2000, 177(1-6): 297-301. doi: 10.1016/S0030-4018(00)00572-1
    [9] 朱一帆, 耿滔. 谐振腔内的高质量圆对称艾里光束的产生方法[J]. 物理学报,2020,69(1):256-264.

    ZHU Y F, GENG T. Generation of high-quality circular Airy beams in laser resonator[J]. Acta Physica Sinica, 2020, 69(1): 256-264. (in Chinese)
    [10] CĂLIN B S, PREDA L, JIPA F, et al. Laser fabrication of diffractive optical elements based on detour-phase computer-generated holograms for two-dimensional Airy beams[J]. Applied Optics, 2018, 57(6): 1367-1372. doi: 10.1364/AO.57.001367
    [11] GUO Y H, HUANG Y J, LI X, et al. Polarization-controlled broadband accelerating beams generation by single catenary-shaped metasurface[J]. Advanced Optical Materials, 2019, 7(18): 1900503. doi: 10.1002/adom.201900503
    [12] WU B R, XU B J, WANG X G, et al. Generation of a polarization insensitive Airy beam using an all-dielectric metasurface[J]. Optical Materials Express, 2021, 11(3): 842-847. doi: 10.1364/OME.418910
    [13] LIU Y J, XU CH J, LIN Z J. et al. Auto-focusing and self-healing of symmetric odd-Pearcey Gauss beams[J]. Optics Letters, 2020, 45(11): 2957-2960. doi: 10.1364/OL.394443
    [14] REN ZH J, YANG CH F, JIN H ZH, et al. Generation of a family of Pearcey beams based on Fresnel diffraction catastrophes[J]. Journal of Optics, 2015, 17(10): 105608. doi: 10.1088/2040-8978/17/10/105608
    [15] REN ZH J, FAN CH J, SHI Y L, et al. Symmetric form-invariant dual Pearcey beams[J]. Journal of the Optical Society of America A, 2016, 33(8): 1523-1530. doi: 10.1364/JOSAA.33.001523
    [16] WU Y, HE SH L, WU J H, et al. Autofocusing Pearcey-like vortex beam along a parabolic trajectory[J]. Chaos,Solitons &Fractals, 2021, 145: 110781.
    [17] ROSALES-GUZMÁN C, HU X B, RODRÍGUEZ-FAJARDO V, et al. Experimental generation of helical Mathieu–Gauss vector modes[J]. Journal of Optics, 2021, 23(3): 034004. doi: 10.1088/2040-8986/abd9e0
    [18] DAI K J, LI W ZH, MORGAN K S, et al. Second-harmonic generation of asymmetric Bessel-Gaussian beams carrying orbital angular momentum[J]. Optics Express, 2020, 28(2): 2536-2546. doi: 10.1364/OE.381679
    [19] LI R, JIN D D, PAN D, et al. Stimuli-responsive actuator fabricated by dynamic asymmetric femtosecond Bessel beam for in situ particle and cell manipulation[J]. ACS Nano, 2020, 14(5): 5233-5242. doi: 10.1021/acsnano.0c00381
    [20] LI Y, ZHANG Y X, ZHU Y. Lommel-Gaussian pulsed beams carrying orbital angular momentum propagation in asymmetric oceanic turbulence[J]. IEEE Photonics Journal, 2020, 12(1): 7900915.
    [21] LU Z H, YAN B L, CHANG K, et al. Space division multiplexing technology based on transverse wavenumber of Lommel-Gaussian beam[J]. Optics Communications, 2021, 488: 126835. doi: 10.1016/j.optcom.2021.126835
    [22] ANGUIANO-MORALES M, MARTÍNEZ A, ITURBE-CASTILLO M D, et al. Different field distributions obtained with an axicon and an amplitude mask[J]. Optics Communications, 2008, 281(3): 401-407. doi: 10.1016/j.optcom.2007.10.013
    [23] REN ZH J, HU H H, PENG B J. Generation of Mathieu beams using the method of ‘combined axicon and amplitude modulation’[J]. Optics Communications, 2018, 426: 226-230. doi: 10.1016/j.optcom.2018.05.040
    [24] ARRIZÓN V, MÉNDEZ G, SÁNCHEZ-DE-LA-LLAVE D. Accurate encoding of arbitrary complex fields with amplitude-only liquid crystal spatial light modulators[J]. Optics Express, 2005, 13(20): 7913-7927. doi: 10.1364/OPEX.13.007913
    [25] GOORDEN S A, BERTOLOTTI J, MOSK A P. Superpixel-based spatial amplitude and phase modulation using a digital micromirror device[J]. Optics Express, 2014, 22(15): 17999-8009. doi: 10.1364/OE.22.017999
    [26] ARRIZÓN V, RUIZ U, CARRADA R, et al. Pixelated phase computer holograms for the accurate encoding of scalar complex fields[J]. Journal of the Optical Society of America A, 2007, 24(11): 3500-3507. doi: 10.1364/JOSAA.24.003500
    [27] GONG L, QIU X Z, REN Y X, et al. Observation of the asymmetric Bessel beams with arbitrary orientation using a digital micromirror device[J]. Optics Express, 2014, 22(22): 26763-26776. doi: 10.1364/OE.22.026763
    [28] ZHAO Q, GONG L, LI Y M. Shaping diffraction-free Lommel beams with digital binary amplitude masks[J]. Applied Optics, 2015, 54(25): 7553-7558. doi: 10.1364/AO.54.007553
    [29] 刘思垣, 张静宇. 基于空间光调制器的超快激光加工原理及应用[J]. 激光与光电子学进展,2020,57(11):111431.

    LIU S Y, ZHANG J Y. Principles and applications of ultrafast laser processing based on spatial light modulators[J]. Laser &Optoelectronics Progress, 2020, 57(11): 111431. (in Chinese)
    [30] 苏显渝. 信息光学[M]. 2版. 北京: 科学出版社, 2011.

    SU X Y. Information Optics[M]. 2nd ed. Beijing: Science Press, 2011. (in Chinese)
    [31] 徐乾, 孟凡昊, 谢铮, 等. 计算全息显示技术的研究[J]. 物理实验,2018,38(1):1-7.

    XU Q, MENG F H, XIE ZH, et al. Research on computer generated holograms[J]. Physics Experimentation, 2018, 38(1): 1-7. (in Chinese)
    [32] TAMURA H, TORII Y. Enhancement of the Lohmann-type computer-generated hologram encoded by direct multilevel search algorithm[J]. Optical Review, 2012, 19(3): 131-141. doi: 10.1007/s10043-012-0023-9
    [33] WANG B X, HONG X M, WANG K, et al. Nonlinear detour phase holography[J]. Nanoscale, 2021, 13(4): 2693-2702. doi: 10.1039/D0NR07069F
    [34] SHI Y L, WANG H, LI Y, et al. Practical method for color computer-generated rainbow holograms of real-existing objects[J]. Applied Optics, 2009, 48(21): 4219-4226. doi: 10.1364/AO.48.004219
  • 加载中
图(10)
计量
  • 文章访问数:  1716
  • HTML全文浏览量:  726
  • PDF下载量:  323
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-19
  • 修回日期:  2021-04-27
  • 网络出版日期:  2021-06-21
  • 刊出日期:  2022-01-01

目录

    /

    返回文章
    返回