留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于碟式微流控芯片的尿液生化检测系统研制及应用

孟永康 雷祝兵 梅茜 董文飞

孟永康, 雷祝兵, 梅茜, 董文飞. 用于碟式微流控芯片的尿液生化检测系统研制及应用[J]. 中国光学(中英文), 2021, 14(6): 1317-1326. doi: 10.37188/CO.2021-0067
引用本文: 孟永康, 雷祝兵, 梅茜, 董文飞. 用于碟式微流控芯片的尿液生化检测系统研制及应用[J]. 中国光学(中英文), 2021, 14(6): 1317-1326. doi: 10.37188/CO.2021-0067
MENG Yong-kang, LEI Zhu-bing, MEI Qian, DONG Wen-fei. Development and application of urine biochemical detection system for a disc microfluidic chip[J]. Chinese Optics, 2021, 14(6): 1317-1326. doi: 10.37188/CO.2021-0067
Citation: MENG Yong-kang, LEI Zhu-bing, MEI Qian, DONG Wen-fei. Development and application of urine biochemical detection system for a disc microfluidic chip[J]. Chinese Optics, 2021, 14(6): 1317-1326. doi: 10.37188/CO.2021-0067

用于碟式微流控芯片的尿液生化检测系统研制及应用

基金项目: 国家重点研发计划(No. 2020YFC4500);国家自然科学基金项目(No. 21803075,No. 61805273,No. 81902166,No. 91959112,No. 62027825);济南市“高校20条”资助项目(No. 2018GXRC016);中国科学院院地合作项目(No. 2020SYHZ0041)
详细信息
    作者简介:

    孟永康(1995—),男,河南漯河人,硕士研究生,2018年于河南工程学院获得学士学位,主要从事机械工程等方面研究。E-mail:ykmeng1995@163.com

    雷祝兵(1997—),男,安徽安庆人,硕士研究生,2019年于苏州科技大学获得学士学位,主要从事电子通信等方面研究。E-mail:18816292771@163.com

    梅 茜(1977—),女,河南洛阳人,博士,研究员,博士生导师,2000年、2003年于东南大学分别获得学士、硕士学位,2007年于美国佛罗里达大学获得博士学位,主要从事微流控系统的设计和制造及其在生物医学中的应用研究。E-mail:qmei@sibet.ac.cn

    董文飞(1975—),男,吉林长春人,博士,研究员,博士生导师,1996年于浙江大学化学工程系化学工程专业获得学士学位,1999年于中国科学院长春应用化学研究所获得高分子物理化学专业硕士学位,2004年于德国波兹坦大学获得自然科学博士学位,主要从事纳米生物医学工程及其在药物递送、在体成像和液体活检等方面的研究应用。E-mail:wenfeidong@sibet.ac.cn

  • 中图分类号: TP273; R446.1

Development and application of urine biochemical detection system for a disc microfluidic chip

Funds: Supported by National Key R&D Program of China (No. 2020YFC4500); National Natural Science Foundation of China (No. 21803075, No. 61805273, No. 81902166, No. 91959112, No. 62027825); Science and Technology Department of Jinan City (No. 2018GXRC016); Science Foundation of the Chinese Academy of Sciences (No. 2020SYHZ0041)
More Information
  • 摘要: 针对尿液自动化、快速检测的需求,结合微流控技术与生化分析技术,设计并制备了一种基于离心力驱动的碟式微流控尿液生化检测芯片。该芯片采用微流道与毛细阀、虹吸阀和铁蜡阀结合可实现微量样品和试剂有序输送、混合及检测等集成功能,通过COMSOL多物理场仿真软件对芯片上毛细阀和虹吸阀结构进行仿真分析,优化转速。围绕微流控芯片,研制了一套小型化、全自动尿液生化检测系统。通过双光路设计和双波长检测方法降低光源波动和背景干扰对检测结果的影响,并在该系统上进行尿视黄醇结合蛋白重复性和校准分析。结果显示,该系统的精密度变异系数为1.3%~2.46%,说明系统具有较好的重复性。校准曲线表明浓度和吸光度值有良好的线性相关性(R2=0.995)。芯片上4个相同单元结构可完成多样本或多指标的并行检测,有望应用于尿液蛋白的快速检测。

     

  • 图 1  碟式微流控芯片示意图(a)和截面图(b)

    Figure 1.  (a) Schematic diagram and (b) section view of a disc microfluidic chip

    图 2  微流控芯片单元结构和尺寸

    Figure 2.  Unit structure and dimensions of a disc microfluidic chip

    图 3  芯片实物图

    Figure 3.  Photograph of a disc microfluidic chip

    图 4  铁蜡阀的制造和应用

    Figure 4.  The fabrication and application of ferrowax valves

    图 5  液体突破毛细阀仿真图

    Figure 5.  Simulation results of liquid breaking through the capillary valve

    图 6  不同转速的虹吸阀仿真结果

    Figure 6.  Simulation results of siphon valve at various spin speeds

    图 7  样品和试剂的转移和混匀

    Figure 7.  The transport and mixing of the sample (light pink) and reagent (green and red)

    图 8  系统控制流程图

    Figure 8.  Flow chart of the system control

    图 9  光学检测系统

    Figure 9.  Optical detection system

    图 10  双光路线性关系

    Figure 10.  The linear relationship between two optical paths

    图 11  校准曲线

    Figure 11.  Calibration curve

    表  1  芯片检测1 mg/L URBP质控品的吸光度差值

    Table  1.   Absorbance difference of 1 mg/L URBP quality control product measured by the microfluidic chip

    检测次数ΔA检测次数ΔA
    10.0098560.01014
    20.0104070.00979
    30.0103680.00973
    40.0101790.00985
    50.00976100.00987
    下载: 导出CSV

    表  2  芯片检测4.3 mg/L URBP质控品的吸光度差值

    Table  2.   Absorbance difference of 4.3 mg/L URBP quality control product measured by the microfluidic chip

    检测次数ΔA检测次数ΔA
    10.0393560.03814
    20.0383870.03839
    30.0391280.03860
    40.0391990.03784
    50.03839100.03793
    下载: 导出CSV
  • [1] 林秉承,秦建华. 微流控芯片实验室[M]. 北京: 科学出版社, 2006.

    LIN B CH, QIN J H. Laboratory on a Microfluidic Chip[M]. Beijing: Science Press, 2006. (in Chinese)
    [2] 范建华, 邓永波, 宣明, 等. PC微流控芯片黏结筋与溶剂的协同辅助键合[J]. 光学 精密工程,2015,23(3):708-713. doi: 10.3788/OPE.20152303.0708

    FAN J H, DENG Y B, XUAN M, et al. Synergistic bonding process of solvent and tendon for PC-based microfluidic chips[J]. Optics and Precision Engineering, 2015, 23(3): 708-713. (in Chinese) doi: 10.3788/OPE.20152303.0708
    [3] KIM C J, PARK J, SUNKARA V, et al. Fully automated, on-site isolation of cfDNA from whole blood for cancer therapy monitoring[J]. Lab on a Chip, 2018, 18(9): 1320-1329. doi: 10.1039/C8LC00165K
    [4] 王洪, 郑杰, 闫延鹏, 等. 数字微流控芯片上液滴驱动[J]. 光学 精密工程,2020,28(11):2488-2496. doi: 10.37188/OPE.20202811.2488

    WANG H, ZHENG J, YAN Y P, et al. Drop driving on digital microfluidic chip[J]. Optics and Precision Engineering, 2020, 28(11): 2488-2496. (in Chinese) doi: 10.37188/OPE.20202811.2488
    [5] CHEN J G, XU Y CH, YAN H, et al. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification[J]. Lab on a Chip, 2018, 18(16): 2441-2452. doi: 10.1039/C8LC00399H
    [6] KIM H O, NA W, YEOM M, et al. Host cell mimic polymersomes for rapid detection of highly pathogenic influenza virus via a viral fusion and cell entry mechanism[J]. Advanced Functional Materials, 2018, 28(34): 1800960. doi: 10.1002/adfm.201800960
    [7] TANG M H, WANG G H, KONG S K, et al. A review of biomedical centrifugal microfluidic platforms[J]. Micromachines, 2016, 7(2): 26. doi: 10.3390/mi7020026
    [8] TIAN F, LIU CH, DENG J Q, et al. A fully automated centrifugal microfluidic system for sample-to-answer viral nucleic acid testing[J]. Science China Chemistry, 2020, 63(10): 1498-1506. doi: 10.1007/s11426-020-9800-6
    [9] 周武平, 唐玉国, 黎海文, 等. 高通量离心式液滴生成芯片设计[J]. 光学 精密工程,2020,28(12):2636-2645. doi: 10.37188/OPE.20202812.2636

    ZHOU W P, TANG Y G, LI H W, et al. Design of high throughput droplet generation chip[J]. Optics and Precision Engineering, 2020, 28(12): 2636-2645. (in Chinese) doi: 10.37188/OPE.20202812.2636
    [10] WANG Y Y, LIU SH Y, ZHANG T K, et al. A centrifugal microfluidic pressure regulator scheme for continuous concentration control in droplet-based microreactors[J]. Lab on a Chip, 2019, 19(22): 3870-3879. doi: 10.1039/C9LC00631A
    [11] 周文超, 吴一辉, 郝鹏, 等. 全血微流控芯片的高灵敏度多参数光探测[J]. 光学 精密工程,2013,21(11):2821-2828. doi: 10.3788/OPE.20132111.2821

    ZHOU W CH, WU Y H, HAO F, et al. Highly sensitive and multi-parameter optical detection for whole blood on centrifugal microfluidic chip[J]. Optics and Precision Engineering, 2013, 21(11): 2821-2828. (in Chinese) doi: 10.3788/OPE.20132111.2821
    [12] 徐刚. 尿蛋白与尿肌酐的比值、β2微球蛋白及视黄醇结合蛋白联合检测对糖尿病肾病的早期诊断价值[J]. 实用临床医药杂志,2020,24(21):86-89.

    XU G. Value of combined detection of urinary albumin-to-creatinine ratio, β2 microglobulin and retinol binding protein in early diagnosis of diabetic nephropathy[J]. Journal of Clinical Medicine in Practice, 2020, 24(21): 86-89. (in Chinese)
    [13] 杜亚琴, 张文松, 牟俊杰, 等. 胱抑素C、β2微球蛋白和视黄醇结合蛋白的测定在评估慢性肾脏疾病损害程度中的应用[J]. 西部医学,2021,33(2):231-234.

    DU Y Q, ZHANG W S, MOU J J, et al. Feasibility of the determination of cystatin C, β2 microglobulin and retinol binding protein in the assessment of renal damage in chronic kidney disease[J]. Medical Journal of West China, 2021, 33(2): 231-234. (in Chinese)
    [14] 俞俊文, 刘献文. 尿RBP胶乳增强免疫比浊检测方法的建立及性能评价[J]. 国际检验医学杂志,2016,37(17):2481-2483.

    YU J W, LIU X W. Establishment and performance evaluation of urine RBP latex enhanced immunoturbidity detection method[J]. International Journal of Laboratory Medicine, 2016, 37(17): 2481-2483. (in Chinese)
    [15] 方亮, 王芬, 刘献文, 等. 血清和尿液中黄醇结合蛋白胶乳增强免疫比浊试剂盒的制备及性能评价[J]. 国际检验医学杂志,2018,39(1):103-106.

    FANG L, WANG F, LIU X W, et al. Preparation and performance evaluation of xanthol-binding protein latex immunoturbidimetry enhancement kit in serum and urine[J]. International Journal of Laboratory Medicine, 2018, 39(1): 103-106. (in Chinese)
    [16] PARK J M, CHO Y K, LEE B S, et al. Multifunctional microvalves control by optical illumination on nanoheaters and its application in centrifugal microfluidic devices[J]. Lab on a Chip, 2007, 7(5): 557-564. doi: 10.1039/b616112j
    [17] NAGHDLOO A, GHAZIMIRSAEED E, SHAMLOO A. Numerical simulation of mixing and heat transfer in an integrated centrifugal microfluidic system for nested-PCR amplification and gene detection[J]. Sensors and Actuators B:Chemical, 2019, 283: 831-841. doi: 10.1016/j.snb.2018.12.084
    [18] 李昌厚. 紫外可见分光光度计[M]. 北京: 化学工业出版社, 2005.

    LI CH H. Ultraviolet/Visible Spectrometer[M]. Beijing: Chemical Industry Press, 2005. (in Chinese)
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  1749
  • HTML全文浏览量:  670
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-26
  • 修回日期:  2021-05-08
  • 网络出版日期:  2021-06-02
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回