留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dual-wavelength narrow-bandwidth dielectric metamaterial absorber

FANG Xiao-min JIANG Xiao-wei WU Hua

方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器[J]. 中国光学(中英文), 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
引用本文: 方晓敏, 江孝伟, 武华. 双波长窄带宽介质超材料吸收器[J]. 中国光学(中英文), 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075
Citation: FANG Xiao-min, JIANG Xiao-wei, WU Hua. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. doi: 10.37188/CO.2021-0075

双波长窄带宽介质超材料吸收器

详细信息
  • 中图分类号: TN256

Dual-wavelength narrow-bandwidth dielectric metamaterial absorber

doi: 10.37188/CO.2021-0075
Funds: Supported by National Natural Science Foundation of China (No. 61575008, No. 61650404), Jiangxi Natural Science Foundation (No. 20171BAB202037), Technology Project of Jiangxi Provincial Education Department (No. GJJ170819), Quzhou Science and Technology Project (No. 2019K20)
More Information
    Author Bio:

    FANG Xiao-min (1985—), male, born in Quzhou, Zhejiang, master, associate professor. In 2010, he received a master's degree from China Jiliang University. His research focuses on metamaterials and optoelectronic devices. E-mail: zhjfangxiaomin@163.com

    JIANG Xiao-wei (1991—), male, born in Jiangshan, Zhejiang, master, lecturer. He received his master's degree from Beijing Institute of Technology in 2016, and since then he has focused on metamaterials and optoelectronic devices. Email: JosephJiangquzhi@126.com

    WU Hua (1980—), male, from Xiantao, Hubei, Ph.D., associate professor. After obtaining master's and doctoral degrees from Guangdong University of Technology and Beijing University of Technology in 2006 and 2015, he is mainly engaged in the research of micro-nano materials and semiconductor optoelectronic devices. Email: wh1125@126.com

    Corresponding author: JosephJiangquzhi@126.com
  • 摘要: 为降低窄带宽超材料吸收器(Metamaterial Absorber,MA)制造成本的同时拓宽其应用领域,本文基于时域有限差分法利用介质材料设计出双波长窄带宽介质MA,其由Au衬底、SiO2介质层和Si介质非对称光栅构成。经模拟计算发现,本文提出的双波长窄带宽介质MA在λ1=1.20852 μm和λ2=1.23821 μm具有超高吸收效率,而且FWHM也分别只有0.735 nm和0.077 nm。MA在λ1实现窄带宽吸收主要是因为光在SiO2层形成了法布里-珀罗(Fabry-Pérot, FP)腔共振,而MA在λ2实现窄带宽吸收主要是由于入射光在介质非对称光栅中形成了导模共振效应。经理论计算可知,通过改变MA的结构参数可对其吸收特性产生较为显著的影响。

     

  • 图 1  双波长窄带宽介质MA结构图

    Figure 1.  Dual-wavelength narrow-bandwidth dielectric MA structure diagram

    图 2  双波长窄带宽介质MA吸收光谱

    Figure 2.  Absorption spectroscopy of dual-wavelength narrow-bandwidth dielectric MA

    图 3  介质MA的有效阻抗。(a)阻抗实部;(b)阻抗虚部

    Figure 3.  Effective impedance of dielectric MA. (a) Real part of impedance; (b) imaginary part of impedance

    图 4  双波长窄带宽介质MA在不同波长处的电场分布。(a)λ1;(b)λ2

    Figure 4.  Electric field distribution of dual-wavelength narrow-bandwidth dielectric MA at different wavelengths. (a) λ1; (b) λ2

    图 5  t对双波长窄带宽介质MA吸收特性的影响。(a)吸收光谱;(b)吸收波长

    Figure 5.  Effect of t on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA. (a) Absorption spectra; (b) absorption wavelength

    图 6  t=1.205 μm时MA在波长λ2处的电场分布

    Figure 6.  Electric field distribution of MA at wavelength λ2 when t = 1.205 μm

    图 7  W1对双波长窄带宽介质MA吸收特性的影响。(a)吸收光谱;(b)吸收波长

    Figure 7.  Effect of W1 on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA. (a) Absorption spectra; (b) absorption wavelength

    图 8  W1neq的影响

    Figure 8.  Effect of W1 on neq

    图 9  n对双波长窄带宽介质MA吸收特性的影响。(a)吸收光谱;(b)吸收波长

    Figure 9.  Effect of n on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA. (a) Absorption spectra; (b) absorption wavelength

    图 10  P对双波长窄带宽介质MA吸收特性的影响

    Figure 10.  Effect of P on the absorption characteristics of the dual-wavelength narrow-bandwidth dielectric MA

    图 11  PΦ的影响

    Figure 11.  Effect of P on Φ

  • [1] ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    [2] DU K K, LI Q, LV Y B, et al. Control over emissivity of zero-static-power thermal emitters based on phase-changing material GST[J]. Light,Science &Applications, 2017, 6(1): e16194.
    [3] HE X Y, LIU F, LIN F T, et al. Tunable 3D Dirac-semimetals supported mid-IR hybrid plasmonic waveguides[J]. Optics Letters, 2021, 46(3): 472-475. doi: 10.1364/OL.415187
    [4] HE X Y, LIU F, LIN F T, et al. Tunable terahertz Dirac semimetal metamaterials[J]. Journal of Physics D:Applied Physics, 2021, 54(3): 235103.
    [5] MOU N L, LIU X L, WEI T, et al. Large-scale, low-cost, broadband and tunable perfect optical absorber based on phase-change material[J]. Nanoscale, 2020, 12(9): 5374-5379. doi: 10.1039/C9NR07602F
    [6] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [7] TUAN T S, HOA N T Q. Numerical study of an efficient broadband metamaterial absorber in visible light region[J]. IEEE Photonics Journal, 2019, 11(3): 4600810.
    [8] PENG J, HE X Y, SHI CH Y Y, et al. Investigation of graphene supported terahertz elliptical metamaterials[J]. Physica E:Low-Dimensional Systems and Nanostructures, 2020, 124: 114309. doi: 10.1016/j.physe.2020.114309
    [9] YAO G, LING F R, YUE J, et al. Dual-band tunable perfect metamaterial absorber in the THz range[J]. Optics Express, 2016, 24(2): 1518-1527. doi: 10.1364/OE.24.001518
    [10] LIU N, MESCH M, WEISS T, et al. Infrared perfect absorber and its application as plasmonic sensor[J]. Nano Letters, 2010, 10(7): 2342-2348. doi: 10.1021/nl9041033
    [11] GREFFET J J, CARMINATI R, JOULAIN K, et al. Coherent emission of light by thermal sources[J]. Nature, 2002, 416(6876): 61-64. doi: 10.1038/416061a
    [12] ZHU ZH H, EVANS P G, HAGLUND R F JR, et al. Dynamically reconfigurable metadevice employing nanostructured phase-change materials[J]. Nano Letters, 2017, 17(8): 4881-4885. doi: 10.1021/acs.nanolett.7b01767
    [13] ANKER J N, HALL W P, LYANDRES O, et al. Biosensing with plasmonic nanosensors[J]. Nature Materials, 2008, 7(6): 442-453. doi: 10.1038/nmat2162
    [14] MENG L J, ZHAO D, RUAN ZH C, et al. Optimized grating as an ultra-narrow band absorber or plasmonic sensor[J]. Optics Letters, 2014, 39(5): 1137-1140. doi: 10.1364/OL.39.001137
    [15] FENG A S, YU Z J, SUN X K. Ultranarrow-band metagrating absorbers for sensing and modulation[J]. Optics Express, 2018, 26(22): 28197-28205. doi: 10.1364/OE.26.028197
    [16] KANG S, QIAN ZH Y, RAJARAM V, et al. Ultra-narrowband metamaterial absorbers for high spectral resolution infrared spectroscopy[J]. Advanced Optical Materials, 2019, 7(2): 1801236. doi: 10.1002/adom.201801236
    [17] RRN ZH B, SUN Y H, LIN Z H, et al. Ultra-narrow band perfect metamaterial absorber based on dielectric-metal periodic configuration[J]. Optical Materials, 2019, 89: 308-315. doi: 10.1016/j.optmat.2019.01.020
    [18] LIAO Y L, ZHAO Y. Ultra-narrowband dielectric metamaterial absorber with ultra-sparse nanowire grids for sensing applications[J]. Scientific Reports, 2020, 10(1): 1480. doi: 10.1038/s41598-020-58456-y
    [19] XU Z CH, GAO R M, DING CH F, et al. Multiband metamaterial absorber at terahertz frequencies[J]. Chinese Physics Letters, 2014, 31(5): 054205. doi: 10.1088/0256-307X/31/5/054205
    [20] HU F R, WANG L, QUAN B G, et al. Design of a polarization insensitive multiband terahertz metamaterial absorber[J]. Journal of Physics D:Applied Physics, 2013, 46(19): 195103. doi: 10.1088/0022-3727/46/19/195103
    [21] DING F, DAI J, CHEN Y T, et al. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals[J]. Scientific Reports, 2016, 6(1): 39445. doi: 10.1038/srep39445
    [22] JOHNSON P B, CHRISTY R W. Optical constants of the noble metals[J]. Physical Review B, 1972, 6(12): 4370-4379. doi: 10.1103/PhysRevB.6.4370
    [23] LI W CH, ZHOU X, YING Y, et al. Polarization-insensitive wide-angle multiband metamaterial absorber with a double-layer modified electric ring resonator array[J]. AIP Advances, 2015, 5(6): 067151. doi: 10.1063/1.4923194
    [24] WANG Q. Study on the mechanism and characteristics of guided-mode resonance subwavelength device[D]. Shanghai: University of Shanghai for Science and Technology, 2012: 44-46. (in Chinese)
    [25] ZENG ZH W, LIU H T, ZHANG S W. Design of extraordinary-optical-transimission refractive-index sensor of subwavelength metallic slit array based on a Fabry-Perot model[J]. Acta Physica Sinica, 2012, 61(20): 200701. (in Chinese) doi: 10.7498/aps.61.200701
    [26] LIU W X. Design and characterization of controllable linewidth guided-mode resonance filter[D]. Nanchang: Nanchang University, 2011: 18-22. (in Chinese)
    [27] JIANG X W, WU H. Metamaterial absorber with controllable absorption wavelength and absorption efficiency[J]. Acta Physica Sinica, 2021, 70(2): 027804. (in Chinese) doi: 10.7498/aps.70.20201173
  • 加载中
图(11)
计量
  • 文章访问数:  1251
  • HTML全文浏览量:  571
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-13
  • 修回日期:  2021-05-11
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2021-11-19

目录

    /

    返回文章
    返回