Design of off-axis multi-reflective optical system based on particle swarm optimization
doi: 10.37188/CO.2021-0087
-
摘要: 满足像差平衡和多约束控制的初始结构构建,是实现极小像差离轴多反光学系统的设计关键。本文基于空间光线追迹与像差矫正相结合的分组设计方法建立离轴多反的初始结构计算数学模型,提出了一种改进的粒子群算法用以解决离轴多反光学系统的初始结构问题,采用带收缩因子的自然选择的粒子群算法提高了计算精度,提升了设计效率,获取了离轴多反光学系统的初始结构。最后,本文以离轴六反的极紫外光刻投影物镜为例,验证此方法的可靠性和有效性,实现了0.33NA极紫外光刻物镜综合波像差优于
$1/80\lambda $ RMS光学系统设计。Abstract: An initial construction satisfying aberration balance and multi-constraint control is essential for the design of an off-axis multi-reflective optical system with minimal aberration. In this paper, a mathematical model for calculating the initial structure of off-axis multi-reflective is established based on the grouping design method combining spatial ray tracing and aberration correction, and an improved Particle Swarm Optimization (PSO) is proposed to solve the initial structure problem of an off-axis multi-reflective optical system. The PSO of natural selection with shrinkage factor is applied to improve calculation accuracy and design efficiency, so as to obtain the initial structure of the off-axis multi-reflection optical system. In the last part of this paper, taking an Extreme UltraViolet (EUV) lithography projection objective with six-mirror reflective aspheric mirrors as an example, the reliability and effectiveness of this method are verified. A 0.33 numerical aperture EUV lithographic objective with wave-front error better than 1/80λ (λ=13.5 nm) RMS is achieved.-
Key words:
- optical design /
- geometric optics /
- aberration theory /
- particle swarm optimization
-
表 1 Evaluation function values calculated by four different algorithms for 6 groups of learning factors
Table 1. Evaluation function values calculated by four different algorithms for 6 groups of learning factors
c1 c2 Natural selection PSO algorithm
with shrinkage factorSimulated annealing PSO
algorithm with shrinkage factorHybrid PSO algorithm
with shrinkage factorNatural selection PSO algorithm
with inertial weight2.05 2.05 0.0106 0.0985 0.0902 0.2415 2.2 1.9 0.0174 0.1148 0.0883 0.0289 2.3 1.8 0.0045 0.0373 0.0498 0.0297 2.4 1.7 0.0255 0.0644 0.0472 0.0584 2.5 1.6 0.0126 0.0533 0.0151 0.0407 2.6 1.7 0.0934 0.1212 0.1041 0.1092 表 2 Specifications of the off-axis six-mirror reflective optical system
Table 2. Specifications of the off-axis six-mirror reflective optical system
Parameter Performance Wavelength/nm 13.5 Numerical Aperture 0.33 Field of view/mm×mm 26×2 Arc Reduction ratio 4 Wavefront error RMS (λ) 0.011 Chief ray angle on mask (°) 6 Max distortion/nm 1.04 Max image telecentricity/mrad 1.75 Total track/mm 1371 Max asphere departure/μm 60 -
[1] WILSON R N. Reflecting Telescope Optics I: Basic Design Theory and its Historical Development[M]. Berlin Heidelberg: Springer, 1996. [2] GONG T T, JIN G F, ZHU J. Point-by-point design method for mixed-surface-type off-axis reflective imaging systems with spherical, aspheric, and freeform surfaces[J]. Optics Express, 2017, 25(9): 10663-10676. [3] MENG Q Y, WANG H Y, LIANG W J, et al. Design of off-axis three-mirror systems with ultrawide field of view based on an expansion process of surface freeform and field of view[J]. Applied Optics, 2019, 58(3): 609-615. [4] PAN J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Soochow University Press, 2004. (in Chinese). [5] CHEN L, GAO ZH SH, YE J F, et al. Construction method through multiple off-axis parabolic surfaces expansion and mixing to design an easy-aligned freeform spectrometer[J]. Optics Express, 2019, 27(18): 25994-26013. [6] YU J, ZHOU F, WANG H, et al. Method for designing error-resistant phase-shifting algorithm[J]. Optics Communications, 2018, 433: 52-59. [7] WANG L P. Optical system of extreme ultraviolet lithography[J]. Chinese Journal of Optics and Applied, 2010, 3(5): 452-461. (in Chinese) [8] LOWISCH M, KUERZ P, CONRADI O, et al. Optics for ASML’s NXE: 3300B platform[J]. Proceedings of SPIE, 2013, 8679: 86791H. [9] CHANG J, ZOU M F, WANG R R, et al. All-reflective optical system design for extreme ultraviolet lithography[J]. Chinese Optics Letters, 2010, 8(11): 1082-1084. doi: 10.3788/COL20100811.1082 [10] VASILJEVIC D M. Optimization of the Cooke triplet with various evolution strategies and damped least squares[J]. Proceedings of SPIE, 1999, 3780: 207-215. [11] LIU J, WEI H, FAN H J. A novel method for finding the initial structure parameters of optical systems via a genetic algorithm[J]. Optics Communications, 2016, 361: 28-35. doi: 10.1016/j.optcom.2015.10.036 [12] BAL M F. Next-generation extreme ultraviolet lithographic projection systems[D]. Delft: Technique University Delft, 2003. [13] BAL M F, BOCIORT F, BRAAT J J M. Analysis, search, and classification for reflective ring-field projection systems[J]. Applied Optics, 2003, 42(13): 2301-2311. doi: 10.1364/AO.42.002301 [14] LERNER S A, SASIAN J M, DESCOUR M R. Design approach and comparison of projection cameras for EUV lithography[J]. Optical Engineering, 2000, 39(3): 792-802. doi: 10.1117/1.602429 [15] DELANO E. First-order design and the diagram[J]. Applied Optics, 1963, 2(12): 1251-1256. doi: 10.1364/AO.2.001251 [16] HUDYMA R, MANN H J, DINGER U. Projection system for EUV lithography: USA, 7375798[P]. 2008-05-20. [17] LIU F, LI Y Q. Grouping design of eight-mirror projection objective for high-numerical aperture EUV lithography[J]. Applied Optics, 2013, 52(29): 7137-7144. doi: 10.1364/AO.52.007137 [18] CAO ZH, LI Y Q, LIU F. Grouping design method with real ray tracing model for extreme ultraviolet lithographic objective[J]. Optical Engineering, 2013, 52(12): 125102. [19] WU Y, WANG L P, YU J, et al. Design method for off-axis aspheric reflective optical system with extremely low aberration and large field of view[J]. Applied Optics, 2020, 59(32): 10185-10193. doi: 10.1364/AO.409561 [20] SHI G H. Find preliminary solution of zoom objective lens using gaussian optics and third-order aberration theory[J]. Chinese Optics, 2018, 11(6): 1047-1060. (in Chinese) doi: 10.3788/co.20181106.1047 [21] WANG L P, ZHANG L CH, HE F Y, et al. Design of aspheric mirror for panoramic imaging system using multi-population genetic algorithm[J]. Optics and Precision Engineering, 2009, 17(5): 1020-1025. (in Chinese) [22] XU F G, HUANG W. Application of genetic algorithm in the design of off-axis four-mirror optical system[J]. Optics and Precision Engineering, 2017, 25(8): 2076-2082. (in Chinese) doi: 10.3788/OPE.20172508.2076 [23] KENNEDY J, EBERHART R. Particle swarm optimization[C]. Proceedings of International Conference on Neural Networks, IEEE, 1995. [24] QIN H, HAN K ZH, LEI CH X. Correction of aberration for three-lens system by particle swarm optimization algorithm[J]. Chinese Optics, 2013, 6(1): 64-72. (in Chinese) [25] GONG CH, WANG ZH L. Proficient in MATLAB Optimization Calculation[M]. Beijing: Publishing House of Electronics Industry, 2009. (in Chinese)