留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Fabrication of an ultra-narrow band-pass filter with 60 pm bandwidth in green light band

WANG Kai-xuan CHEN Gang LIU Ding-quan MA Chong ZHANG Qiu-yu

王凯旋, 陈刚, 刘定权, 马冲, 张秋玉. 绿光波段60 pm超窄带滤光片的研制[J]. 中国光学(中英文), 2022, 15(1): 119-131. doi: 10.37188/CO.2021-0092
引用本文: 王凯旋, 陈刚, 刘定权, 马冲, 张秋玉. 绿光波段60 pm超窄带滤光片的研制[J]. 中国光学(中英文), 2022, 15(1): 119-131. doi: 10.37188/CO.2021-0092
WANG Kai-xuan, CHEN Gang, LIU Ding-quan, MA Chong, ZHANG Qiu-yu. Fabrication of an ultra-narrow band-pass filter with 60 pm bandwidth in green light band[J]. Chinese Optics, 2022, 15(1): 119-131. doi: 10.37188/CO.2021-0092
Citation: WANG Kai-xuan, CHEN Gang, LIU Ding-quan, MA Chong, ZHANG Qiu-yu. Fabrication of an ultra-narrow band-pass filter with 60 pm bandwidth in green light band[J]. Chinese Optics, 2022, 15(1): 119-131. doi: 10.37188/CO.2021-0092

绿光波段60 pm超窄带滤光片的研制

详细信息
  • 中图分类号: O484

Fabrication of an ultra-narrow band-pass filter with 60 pm bandwidth in green light band

doi: 10.37188/CO.2021-0092
Funds: Supported by Natural Science Foundation of Shanghai Municipality, China (No. 17ZR1434900)
More Information
    Author Bio:

    Wang Kai-xuan (1992—), male, born in Bozhou, Anhui Province. Doctor. He received his Bachelor’s degree from Beijing University of Aeronautics and Astronautics in 2013. Now he mainly engages in the research of optical thin film materials and devices. E-mail: wangkx@shanghaitech.edu.cn

    Chen Gang (1983—), male, born in Yinxian County, Zhejiang Province. Doctor and senior engineer. He mainly engages in the design, development and space application of optical films. E-mail: gangchen@mail.sitp.ac.cn

    Liu Ding-quan (1964—), male, born in Chenggu, Shaanxi Province. Doctor, doctoral supervisor and researcher. Currently he is the director of the research office of optical films, materials and devices, and the distinguished professor of Shanghai University of Science and Technology. His research is focused on the thin film optics and technology, infrared optical thin film and space application, and micro nano optics, etc. E-mail: dqliu@mail.sitp.ac.cn

    Corresponding author: dqliu@mail.sitp.ac.cn
  • 摘要: 波长为532 nm的绿色激光在大气层中有较强的穿透能力,可用于自由空间光通信和激光三维测绘,为了抑制背景光的干扰,需要半功率带宽小于100 pm的光谱滤波器。因此,设计并研制了基于光学干涉薄膜的超窄带滤光片。将五氧化二钽(Ta2O5)和二氧化硅(SiO2)分别作为高低折射率膜层材料,将熔石英作为基片,采用双离子束溅射沉积方法制备出所设计的光学薄膜。利用可调谐激光器和功率计测量滤光片的透射光谱,其半功率带宽为(60±2) pm,透过率达到62.6%。

     

  • 图 1  设计的超窄带滤光片透射光谱

    Figure 1.  Transmittance spectra of the designed ultra-narrow band-pass filter

    图 2  透射光控信号随膜层的变化

    Figure 2.  Variation of the transmittance of optical signal as a function of the number of film layers

    图 3  各个膜层误差对光谱影响的敏感度

    Figure 3.  Sensitivity of film layer error on filter spectrum in each layer

    图 4  分成两片监控后光控信号的变化

    Figure 4.  Change of optical monitoring signal by using two separated monitor glass plates

    图 5  透射光谱测量装置示意图

    Figure 5.  Schematic diagram of the transmission spectrum measurement setup

    图 6  测量的超窄带通滤光片的透射光谱

    Figure 6.  Measured transmission spectrum of the ultra-narrow band-pass filter

    图 7  随机引入控制误差后的光谱曲线变化情况

    Figure 7.  Variation of spectral curves after randomly introducing the control errors

    图 8  粗糙基片表面与薄膜分界示意图

    Figure 8.  Schematic diagram of the boundary between rough substrate surface and thin film

    表  1  Comparison of main filtering techniques for sub-nanometer spectrum in visible light band

    Table  1.   Comparison of main filtering techniques for sub-nanometer spectrum in visible light band

    Spectral filtering techniqueSpectral finenessOptical efficiencyWave optionStructureStability
    Acoustoptic modulation
    1~0.01 nmMediumFast modulatedComplexGood
    Atomic filtering
    1~0.001 nmHigh−lowFixed, fewer optionsComplexNot bad
    F-P etalon1~0.002 nmHighFixed, more optionsSomewhat complexGood
    Film interference
    1~0.03 nmHighFixed, more optionsSimpleVery good
    下载: 导出CSV

    表  2  Data of measured and designed transmission spectrum

    Table  2.   Data of measured and designed transmission spectrum

    Bandwidth
    (pm)
    Peak transmittance
    (%)
    Central wavelength
    (nm)
    A. Design value
    (without absorption)
    5793.4532.00
    B. Design value
    (with absorption)
    6374.3532.00
    C. Measured value6262.6532.009
    D. Deviation value
    (from B)
    −1−11.7+0.009
    下载: 导出CSV

    表  3  Optical and thermal properties of substrates and thin films in this study[12, 21-22]

    Table  3.   Optical and thermal properties of substrates and thin films in this study[12, 21-22]

    MaterialsRefractive index,
    n@ 532nm,20~40 ℃
    Refractive-index temperature coefficient,
    dn/dT (10−6/℃)
    Linear expansion coefficient, α
    (10−6/℃)
    @0~100 ℃
    Crystal Quartz (CQ)1.555.213.4
    Fused quartz (JGS-1)1.4610.00.55
    Glass ceramics (Zerodur)1.5414.30.05
    Glass (K9, BK7)1.523.07.4
    Sapphire (Al2O3)1.7713.16.7
    SiO2 film1.449.00.55
    Ta2O5 film2.1120.01.1
    下载: 导出CSV
  • [1] YU A W, STEPHEN M A, LI S X, et al. Space laser transmitter development for ICESat-2 mission[J]. Proceedings of SPIE, 2010, 7578: 757809. doi: 10.1117/12.843342
    [2] SAWRUK N W, STEPHEN M A, LITVINOVITCH S, et al. Space qualified laser transmitter for NASA’s ICESat-2 mission[J]. Proceedings of SPIE, 2013, 8599: 85990O. doi: 10.1117/12.2005590
    [3] GAO SH J, WU J B, LIU Y K, et al. Development status and trend of micro-satellite laser communication systems[J]. Chinese Optics, 2020, 13(6): 1171-1181. (in Chinese) doi: 10.37188/CO.2020-0033
    [4] DONG Q R, CHEN T, GAO SH J, et al. Progress of research on satellite-borne laser communication technology[J]. Chinese Optics, 2019, 12(6): 1260-1270. (in Chinese) doi: 10.3788/co.20191206.1260
    [5] TROUPAKI E, DENNY Z H, WU S, et al. Space qualification of the optical filter assemblies for the ICESat-2/ATLAS instrument[J]. Proceedings of SPIE, 2015, 9346: 93460H.
    [6] WANG J Y, SHU R, LIU Y N, et al.. Introduction to Imaging Spectroscopy[M]. Beijing: Science Press, 2011: 90-110. (in Chinese)
    [7] HAN F, LIU H J, SUN D S, et al. An ultra-narrow bandwidth filter for daytime wind measurement of direct detection Rayleigh lidar[J]. Current Optics and Photonics, 2020, 4(1): 69-80.
    [8] GAYEN S K, BILLMERS R I, CONTARINO V M, et al. Induced-dichroism-excited atomic line filter at 532 nm[J]. Optics Letters, 1995, 20(12): 1427-1429. doi: 10.1364/OL.20.001427
    [9] XU CH, XIAO O L, MA J Y, et al. High temperature annealing effect on structure, optical property and laser-induced damage threshold of Ta2O5 films[J]. Applied Surface Science, 2008, 254(20): 6554-6559. doi: 10.1016/j.apsusc.2008.04.034
    [10] ZHAO Q, PU Y T, HAO L, et al. Residual stress and laser-induced damage of ion-beam sputtered Ta2O5/SiO2 mixture coatings[J]. Thin Solid Films, 2015, 592: 221-224. doi: 10.1016/j.tsf.2015.06.023
    [11] LV Q P, HUANG M L, ZHANG SH Q, et al. Effects of annealing on residual stress in Ta2O5 films deposited by dual ion beam sputtering[J]. Coatings, 2018, 8(4): 150. doi: 10.3390/coatings8040150
    [12] KIM S H, HWANGBO C K. Derivation of the center-wavelength shift of narrow-bandpass filters under temperature change[J]. Optics Express, 2004, 12(23): 5634-5639. doi: 10.1364/OPEX.12.005634
    [13] TANG J F, GU P F, LIU X, et al.. Modern Optical Thin Film Technology[M]. Hangzhou: Zhejiang University Press, 2006: 144-146. (in Chinese)
    [14] MACLEOD H A. Thin-Film Optical Filters[M]. Boca Raton: Taylor & Francis, 2010: 310-313.
    [15] CHEN G. Research on the near infrared optical properties of several metal oxide thin films and narrow bandpass filters for space remote sensing[D]. Shanghai: Shanghai Institute of Technical Physics Chinese Academy of Sciences, 2020: 56-68. (in Chinese)
    [16] CHANELIERE C, AUTRAN J L, DEVINE R A B, et al. Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications[J]. Materials Science and Engineering:R:Reports, 1998, 22(6): 269-322. doi: 10.1016/S0927-796X(97)00023-5
    [17] YUAN W J, SHEN W D, ZHENG X W, et al. Optical and mechanical properties and microstructures of Nb2O5, Ta2O5 and SiO2 thin films prepared by ion beam sputtering[J]. Acta Optica Sinica, 2017, 37(12): 1231001. (in Chinese)
    [18] JIANG Y G, LIU H S, CHEN D, et al. Ultraviolet absorption film technology based on ion beam sputtering Ta2O5 thin films[J]. Optics and Precision Engineering, 2019, 27(3): 527-532. (in Chinese) doi: 10.3788/OPE.20192703.0527
    [19] SHANG P, XIONG SH M, LI L H, et al. Optical constants and properties of dual-ion-beam sputtering Ta2O5/SiO2 thin film by spectroscopy[J]. Acta Optica Sinica, 2014, 34(5): 0531002. (in Chinese) doi: 10.3788/AOS201434.0531002
    [20] WU Q D. Nucleation and growth of vapor phase deposition on solid surfaces[J]. Vacuum, 1990, 41(4-6): 1431-1433. doi: 10.1016/0042-207X(90)93980-W
    [21] WAKAKI M, KUDO K, SHIBUYA T. Physical Properties and Data of Optical Materials[M]. Boca Raton: CRC Press, 2007: 301-330.
    [22] ZHU X D, ZHANG R J, ZHENG Y X, et al. Spectroscopic ellipsometry and its applications in the study of thin film materials[J]. Chinese Optics, 2019, 12(6): 1195-1234. (in Chinese) doi: 10.3788/co.20191206.1195
  • 加载中
图(8) / 表(3)
计量
  • 文章访问数:  1144
  • HTML全文浏览量:  652
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-23
  • 修回日期:  2021-05-21
  • 录用日期:  2021-08-11
  • 网络出版日期:  2021-08-11
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回