留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect

YU Yang ZHONG Fan JIANG Xi CHU Qiong-Qiong ZHU Shi-Ning LIU Hui

于洋, 仲帆, 江西, 褚琼琼, 祝世宁, 刘辉. 基于旋转超表面的相干自旋霍尔效应的可调光束[J]. 中国光学(中英文), 2021, 14(4): 927-934. doi: 10.37188/CO.2021-0097
引用本文: 于洋, 仲帆, 江西, 褚琼琼, 祝世宁, 刘辉. 基于旋转超表面的相干自旋霍尔效应的可调光束[J]. 中国光学(中英文), 2021, 14(4): 927-934. doi: 10.37188/CO.2021-0097
YU Yang, ZHONG Fan, JIANG Xi, CHU Qiong-Qiong, ZHU Shi-Ning, LIU Hui. Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect[J]. Chinese Optics, 2021, 14(4): 927-934. doi: 10.37188/CO.2021-0097
Citation: YU Yang, ZHONG Fan, JIANG Xi, CHU Qiong-Qiong, ZHU Shi-Ning, LIU Hui. Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect[J]. Chinese Optics, 2021, 14(4): 927-934. doi: 10.37188/CO.2021-0097

基于旋转超表面的相干自旋霍尔效应的可调光束

详细信息
  • 中图分类号: O436.1

Dynamical optical beam produced in rotational metasurface based on coherent spin hall effect

doi: 10.37188/CO.2021-0097
Funds: Supported by National Natural Science Foundation of China (No. 11690033, No. 61425018, No. 11621091, No. 12004072); Natural Science Foundation of Jiangsu Province (No. BK20200388); National Key Research and Development Program of China (No. 2017YFA0205700, No. 2017YFA0303702)
More Information
    Author Bio:

    于 洋(1994—),女,黑龙江大庆人,硕士研究生,主要从事金属表面等离激元、自旋霍尔效应的研究。E-mail:543229546@qq.com

    刘 辉(1974—),男,湖北武汉人,博士,教授,博士生导师,2003年于南京大学物理学院获得博士学位,主要从事光学超材料和集成光子芯片的研究。E-mail:liuhui@nju.edu.cn

    Corresponding author: liuhui@nju.edu.cn
  • 摘要: 基于光子的自旋霍尔效应,超表面可用于光束的产生和控制。本文基于旋转变换利用一维纳米孔链设计了二维纳米孔旋转对称超表面。利用此样品,可以由左旋圆偏振(LCP)和右旋圆偏振(RCP)光的自旋霍尔效应同时产生贝塞尔光束。利用线偏振光激发,通过控制两个圆偏振光激发光束之间的相干干涉可动态调控贝塞尔光束的强度和偏振。同时,此方法还具有宽带调制的优点。

     

  • Figure 1.  (a) Schematic of designed metasurface from the rotated chains of the nanohole arrays; (b) designed nanohole with configuration angle φ; (c) sample picture of the rotated metasurface fabricated by a focused ion beam; (d) illuminating rotated metasurface with a circularly polarized laser beam; (e) Optical experiment setup

    Figure 2.  Beam spot profile at z=15 μm produced by the rotated metasurface illuminated by circularly polarized incident light. (a) From theoretical calculation; (b) from experimental measurement; (c) intensity distribution curves of beam spot along a central line (blue dots: from measurement; orange curve: from calculation)

    Figure 3.  Beam spot profile at z=18 μm produce by the rotated metasurface illuminated by a linearly polarized incident light with polarized angle $\psi = 0,{\rm{ }}{\text{π}} /2{\rm{, }}{\text{π}}$. (a-c) From theoretical calculation; (d-f) from experimental measurement

    Figure 4.  Intensity of beam spot produced by rotated metasurface with varied polarized angle $\psi $ (blue dots: from measurement; orange curve: from calculation)

    Figure 5.  Detecting the polarization state of the output beam spot from rotated metasurface with linearly polarized light. A polarizer is put in front of the sample and an analyzer is put behind the sample. (a, c) the analyzer is parallel to polarizer; (b, d) the analyzer is perpendicular to the polarizer

    Figure 6.  The calculated laser beam produced by the rotated metasurface illuminated by a circularly polarized light with three different incident wavelengths. (a) λ=690 nm; (b) λ=865 nm; (c) λ=1040 nm

  • [1] ANANDAN J. The geometric phase[J]. Nature, 1992, 360(6402): 307-313. doi: 10.1038/360307a0
    [2] PANCHARATNAM S. Generalized theory of interference, and its applications[J]. Proceedings of the Indian Academy of Sciences - Section A, 1956, 44(5): 247-262. doi: 10.1007/BF03046050
    [3] GARCÉS-CHÁVEZ V, MCGLOIN D, MELVILLE H, et al. Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam[J]. Nature, 2002, 419(6903): 145-147. doi: 10.1038/nature01007
    [4] YU N F, CAPASSO F. Flat optics with designer metasurfaces[J]. Nature Materials, 2014, 13(2): 139-150. doi: 10.1038/nmat3839
    [5] LUO X G. Principles of electromagnetic waves in metasurfaces[J]. Science China Physics,Mechanics &Astronomy, 2015, 58(9): 594201.
    [6] PU M B, LI X, MA X L, et al. Catenary optics for achromatic generation of perfect optical angular momentum[J]. Science Advances, 2015, 1(9): e1500396. doi: 10.1126/sciadv.1500396
    [7] GUO Y H, WANG Y Q, PU M B, et al. Dispersion management of anisotropic metamirror for super-octave bandwidth polarization conversion[J]. Scientific Reports, 2015, 5: 8434. doi: 10.1038/srep08434
    [8] GAO H, PU M B, LI X, et al. Super-resolution imaging with a Bessel lens realized by a geometric metasurface[J]. Optics Express, 2017, 25(12): 13933-13943. doi: 10.1364/OE.25.013933
    [9] SIVILOGLOU G A, CHRISTODOULIDES D N. Accelerating finite energy Airy beams[J]. Optics Letters, 2007, 32(8): 979-981. doi: 10.1364/OL.32.000979
    [10] SIVILOGLOU G A, BROKY J, DOGARIU A, et al. Observation of accelerating airy beams[J]. Physical Review Letters, 2007, 99(21): 213901. doi: 10.1103/PhysRevLett.99.213901
    [11] ZHANG P, HU Y, LI T C, et al. Nonparaxial mathieu and weber accelerating beams[J]. Physical Review Letters, 2012, 109(19): 193901. doi: 10.1103/PhysRevLett.109.193901
    [12] ALEAHMAD P, MIRI M A, MILLS M S, et al. Fully vectorial accelerating diffraction-free helmholtz Beams[J]. Physical Review Letters, 2012, 109(20): 203902. doi: 10.1103/PhysRevLett.109.203902
    [13] KAMINER I, BEKENSTEIN R, NEMIROVSKY J, et al. Nondiffracting accelerating wave packets of Maxwell's equations[J]. Physical Review Letters, 2012, 108(16): 163901. doi: 10.1103/PhysRevLett.108.163901
    [14] CHONG A, RENNINGER W H, CHRISTODOULIDES D N, et al. Airy-Bessel wave packets as versatile linear light bullets[J]. Nature Photonics, 2010, 4(2): 103-106. doi: 10.1038/nphoton.2009.264
    [15] BOUCHAL Z, OLIVIK M. Non-diffractive vector bessel beams[J]. Journal of Modern Optics, 1995, 42(8): 1555-1566. doi: 10.1080/09500349514551361
    [16] PFEIFFER C, GRBIC A. Controlling vector Bessel Beams with metasurfaces[J]. Physical Review Applied, 2014, 2(4): 044012. doi: 10.1103/PhysRevApplied.2.044012
    [17] MORENO I, DAVIS J A, SÁNCHEZ-LÓPEZ M M, et al. Nondiffracting Bessel beams with polarization state that varies with propagation distance[J]. Optics Letters, 2015, 40(23): 5451-5454. doi: 10.1364/OL.40.005451
    [18] DAVIS J A, MORENO I, BADHAM K, et al. Nondiffracting vector beams where the charge and the polarization state vary with propagation distance[J]. Optics Letters, 2016, 41(10): 2270-2273. doi: 10.1364/OL.41.002270
    [19] WU G F, WANG F, CAI Y J. Generation and self-healing of a radially polarized Bessel-Gauss beam[J]. Physical Review A, 2014, 89(4): 043807. doi: 10.1103/PhysRevA.89.043807
    [20] GENEVET P, WINTZ D, AMBROSIO A, et al. Controlled steering of Cherenkov surface plasmon wakes with a one-dimensional metamaterial[J]. Nature Nanotechnology, 2015, 10(9): 804-809. doi: 10.1038/nnano.2015.137
    [21] ZHONG F, LI J, LIU H, et al. Controlling surface plasmons through covariant transformation of the spin-dependent geometric phase between curved metamaterials[J]. Physical Review Letters, 2018, 120(24): 243901. doi: 10.1103/PhysRevLett.120.243901
    [22] XIAO SH Y, ZHONG F, LIU H, et al. Flexible coherent control of plasmonic spin-Hall effect[J]. Nature Communications, 2015, 6: 8360. doi: 10.1038/ncomms9360
    [23] CAI B G, LI Y B, JIANG W X, et al. Generation of spatial Bessel beams using holographic metasurface[J]. Optics Express, 2015, 23(6): 7593-7601. doi: 10.1364/OE.23.007593
    [24] COURTIAL J. Wave plates and the Pancharatnam phase[J]. Optics Communications, 1999, 171(4-6): 179-183. doi: 10.1016/S0030-4018(99)00473-3
    [25] HUANG L L, CHEN X ZH, MÜHLENBERND H, et al. Dispersionless phase discontinuities for controlling light propagation[J]. Nano Letters, 2012, 12(11): 5750-5755. doi: 10.1021/nl303031j
  • 加载中
图(6)
计量
  • 文章访问数:  1178
  • HTML全文浏览量:  495
  • PDF下载量:  189
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-30
  • 修回日期:  2021-05-06
  • 网络出版日期:  2021-05-18
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回