留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性复合薄膜成形极限曲线的视觉测定方法

陈仁虹 梁晋 叶美图 任茂栋 张继耀

陈仁虹, 梁晋, 叶美图, 任茂栋, 张继耀. 柔性复合薄膜成形极限曲线的视觉测定方法[J]. 中国光学(中英文), 2022, 15(1): 22-33. doi: 10.37188/CO.2021-0101
引用本文: 陈仁虹, 梁晋, 叶美图, 任茂栋, 张继耀. 柔性复合薄膜成形极限曲线的视觉测定方法[J]. 中国光学(中英文), 2022, 15(1): 22-33. doi: 10.37188/CO.2021-0101
CHEN Ren-hong, LIANG Jin, YE Mei-tu, REN Mao-dong, ZHANG Ji-yao. Visual method for measuring forming limit curve of pliable composite film[J]. Chinese Optics, 2022, 15(1): 22-33. doi: 10.37188/CO.2021-0101
Citation: CHEN Ren-hong, LIANG Jin, YE Mei-tu, REN Mao-dong, ZHANG Ji-yao. Visual method for measuring forming limit curve of pliable composite film[J]. Chinese Optics, 2022, 15(1): 22-33. doi: 10.37188/CO.2021-0101

柔性复合薄膜成形极限曲线的视觉测定方法

基金项目: 国家自然科学基金资助项目 (No. 51865057)
详细信息
    作者简介:

    陈仁虹(1995—),男,安徽六安人,在读硕士研究生,2018年于安徽大学获得学士学位,主要从事三维光学测量方面的研究。E-mail:1828759602@qq.com

    梁 晋(1968—),男,河南郑州人,博士,教授,博士生导师。1990年、1993年、2001年于西安交通大学分别获得学士、硕士、博士学位,主要从事三维光学测量方面、机器视觉等方面的研究。E-mail:liangjin@mail.edu.cn

  • 中图分类号: TP394.1; TH691.9

Visual method for measuring forming limit curve of pliable composite film

Funds: Supported by National Natural Science Foundation of China (No. 51865057)
More Information
  • 摘要: 针对柔性复合薄膜成形试验中极限应变难以测量的问题,提出一种基于双目立体视觉结合数字图像相关法的测量方法。首先对于薄膜材料成形过程中产生大变形或裂纹时图像难以匹配的问题,根据系列图像相邻状态变形的连续性,提出了一种图像匹配基准自适应更新的弱相关分步匹配方法;然后根据薄膜材料表面应变分布不同于钢制件的特性,提出了一种构建应变场截线来拟合薄膜材料的极限应变曲线的方法。专门组建视觉测定的软、硬件系统,通过Q235钢试件进行极限应变曲线测量并与坐标网格方法进行对比,材料极限应变精度能够提高0.02%,证明了本文方法的可行性和精确性。用7组PET/Nylon/Al foil/PP材料制备成的柔性复合薄膜试件进行实测,此方法及系统成功地完成了柔性复合薄膜材料的成形极限曲线测定。对比实验和实际测试证明,本文方法能够快速、准确地测量柔性复合薄膜材料在整个成形过程中的表面应变分布,与传统的坐标网格方法相比具有明显的优势,为测定薄膜材料的成形极限应变曲线提供了一种高可靠性、高精度的手段。

     

  • 图 1  摄影测量原理示意图

    Figure 1.  Principle diagram of photogrammetry

    图 2  数字图像相关原理图

    Figure 2.  Schematic diagram of the digital image correlation method

    图 3  薄膜材料大变形或出现裂缝

    Figure 3.  Large deformation or cracks of the thin film materials

    图 4  顺序逐帧基准匹配方法

    Figure 4.  Sequential frame-by-frame benchmark matching method

    图 5  实验设备及测量软件

    Figure 5.  Experimental device and software

    图 6  测量流程

    Figure 6.  Measurement process

    图 7  Q235钢试件

    Figure 7.  Q235 steel specimen

    图 8  两种方法结果对比

    Figure 8.  Comparison with two different methods

    图 9  制备柔性复合薄膜并喷涂散斑

    Figure 9.  Pliable composite film and speckle spray

    图 10  相机标定

    Figure 10.  Camera calibration

    图 11  不同状态的表面应变分布

    Figure 11.  Surface strain distribution in different states

    图 12  柔性复合薄膜应变-状态图

    Figure 12.  Strain-state diagram of flexible composite film

    图 13  截线位置确定

    Figure 13.  Determination of cut-off position

    图 14  试件颈缩区域

    Figure 14.  Necking area of specimen

    图 15  极限应变拟合

    Figure 15.  Limit strain fitting

    图 16  柔性复合材料的极限应变曲线

    Figure 16.  Limit strain curve of pliable composite film

    图 17  裂纹位置太偏或多裂纹

    Figure 17.  Crack position is too biased or multiple cracks

    图 18  极限应变拟合

    Figure 18.  Limit strain fitting

    表  1  极限应变对$ ({\varepsilon }_{1},{\varepsilon }_{2}) $

    Table  1.   Limit strain pair $ ({\varepsilon }_{1},{\varepsilon }_{2}) $

    型号第1组第2组第3组第4组第5组第6组第7组
    网格方法(0.46,−0.17)(0.45,−0.14)(0.42,−0.04)(0.39,0.01)(0.43,0.10)(0.46,0.17)(0.51,0.30)
    本文方法(0.44,−0.15)(0.43,−0.13)(0.40,−0.03)(0.37,0.03)(0.42,0.11)(0.46,0.19)(0.50,0.29)
    下载: 导出CSV

    表  2  相机标定内参数

    Table  2.   Camera calibration internal parameters

    内参数左相机右相机
    f/pixel26.58626.633
    x0/pixel1.0426.006
    y0/pixel5.86714.286
    K1−1.37×10−9−1.623×10−9
    K2−3.291×10−171.003×10−16
    K38.614×10−235.813×10−23
    B1−2.302×10−8−1.703×10−7
    B2−2.052×10−8−7.343×10−8
    E1−0.0002241−0.0003031
    E20.0004430.0003076
    下载: 导出CSV
  • [1] 陈培忠, 王克俭. 塑料包装材料共挤复合技术发展[J]. 塑料包装,2021,31(1):29-33. doi: 10.3969/j.issn.1006-9828.2021.01.007

    CHEN P ZH, WANG K J. Development of coextrusion technology for plastic packaging materials[J]. Plastics Packaging, 2021, 31(1): 29-33. (in Chinese) doi: 10.3969/j.issn.1006-9828.2021.01.007
    [2] 李强, 殷新意, 于妍妍, 等. 取向碳纳米管/环氧树脂复合薄膜制备及结构/性能表征[J]. 复合材料学报,2021,38(9):2767-2775.

    LI Q, YIN X Y, YU Y Y, et al. Preparation and characterization of aligned carbon nanotubes/epoxy composite films[J]. Acta Materiae Compositae Sinica, 2021, 38(9): 2767-2775. (in Chinese)
    [3] 张璐. 板料塑性成形极限预测的研究[D]. 秦皇岛: 燕山大学, 2018.

    ZHANG L. Research on prediction of plastic forming limit of sheet metal[D]. Qinhuangdao: Yanshan University, 2018. (in Chinese)
    [4] 谭富星, 李明哲, 蔡中义, 等. 钛合金网板多点成形起皱缺陷的数值模拟[J]. 西安交通大学学报,2007,41(9):1026-1030. doi: 10.3321/j.issn:0253-987x.2007.09.005

    TAN F X, LI M ZH, CAI ZH Y, et al. Numerical simulation of wrinkling in multi-point forming process of titanium alloy retiary sheet[J]. Journal of Xi'an Jiaotong University, 2007, 41(9): 1026-1030. (in Chinese) doi: 10.3321/j.issn:0253-987x.2007.09.005
    [5] RAND J L, GRANT D A. Optical measurement of biaxial strain in thin film polymers[J]. ASTM Special Technical Publication, 1997, 131(8): 123-137.
    [6] PEPELNJAK T, BARISIC B. Computer-assisted engineering determination of the formability limit for thin sheet metals by a modified Marciniak method[J]. The Journal of Strain Analysis for Engineering Design, 2009, 44(6): 459-472. doi: 10.1243/03093247JSA503
    [7] 梁晋, 史宝全, 唐正宗, 等. 三维网格应变测量方法: 中国, 102322813A[P]. 2012-01-18.

    LIANG J, SHI B Q, TANG ZH Z, et al.. 3D grid strain measurement method: CN, 102322813A[P]. 2011-01-18. (in Chinese)
    [8] 梁伟, 黄启斌, 杨晓翔. 基于热转印技术的应变测量网格印制法[J]. 锻压技术,2012,37(6):101-103. doi: 10.3969/j.issn.1000-3940.2012.06.026

    LIANG W, HUANG Q B, YANG X X. Grid-scribed technology for sheet forming strain measuring based on thermal transfer[J]. Forging &Stamping Technology, 2012, 37(6): 101-103. (in Chinese) doi: 10.3969/j.issn.1000-3940.2012.06.026
    [9] 朱凯博, 吕晓东, 王敬涛, 等. Android平台下的应变网格测量方法[J]. 工程与试验,2015,55(3):11-13, 54. doi: 10.3969/j.issn.1674-3407.2015.03.004

    ZHU K B, LV X D, WANG J T, et al. Grid strain measurement based on Android mobile phone[J]. Engineering &Test, 2015, 55(3): 11-13, 54. (in Chinese) doi: 10.3969/j.issn.1674-3407.2015.03.004
    [10] 胡悦, 王永红, 鲍思源, 等. 高温下数字图像相关散斑最优成像探究[J]. 中国光学,2018,11(5):728-735. doi: 10.3788/co.20181105.0728

    HU Y, WANG Y H, BAO S Y, et al. Optimal imaging of digital image correlation speckle under high temperature[J]. Chinese Optics, 2018, 11(5): 728-735. (in Chinese) doi: 10.3788/co.20181105.0728
    [11] 朱飞鹏, 龚琰, 白鹏翔, 等. 基于数字图像相关的光学引伸计应变测量精度研究[J]. 光学 精密工程,2018,26(5):1061-1069. doi: 10.3788/OPE.20182605.1061

    ZHU F P, GONG Y, BAI P X, et al. Study on strain measurement accuracy of optical extensometers based on digital image correlation[J]. Optics and Precision Engineering, 2018, 26(5): 1061-1069. (in Chinese) doi: 10.3788/OPE.20182605.1061
    [12] 陈志新, 梁晋, 郭成. 数字散斑相关法在变形测量中的应用[J]. 光学 精密工程,2011,19(7):1480-1485. doi: 10.3788/OPE.20111907.1480

    CHEN ZH X, LIANG J, GUO CH. Application of digital speckle correlation method to deformation measurement[J]. Optics and Precision Engineering, 2011, 19(7): 1480-1485. (in Chinese) doi: 10.3788/OPE.20111907.1480
    [13] 唐正宗, 梁晋, 肖振中, 等. 用于三维变形测量的数字图像相关系统[J]. 光学 精密工程,2010,18(10):2244-2253.

    TANG ZH Z, LIANG J, XIAO ZH ZH, et al. Digital image correlation system for three-dimensional deformation measurement[J]. Optics and Precision Engineering, 2010, 18(10): 2244-2253. (in Chinese)
    [14] 梁晋, 肖振中, 唐正宗, 等. 大型飞机风洞变形测量的相机标定研究[J]. 西安交通大学学报,2009,43(3):55-59. doi: 10.3321/j.issn:0253-987X.2009.03.012

    LIANG J, XIAO ZH ZH, TANG ZH Z, et al. Large space camera calibration for three-dimensional videogrammetric vibration measurement of large aeroplane model in wind tunnels[J]. Journal of Xi'an Jiaotong University, 2009, 43(3): 55-59. (in Chinese) doi: 10.3321/j.issn:0253-987X.2009.03.012
    [15] 杨建柏, 赵建, 孙强. 基于交比不变性的投影仪标定[J]. 中国光学,2021,14(2):320-328. doi: 10.37188/CO.2020-0111

    YANG J B, ZHAO J, SUN Q. Projector calibration based on cross ratio invariance[J]. Chinese Optics, 2021, 14(2): 320-328. (in Chinese) doi: 10.37188/CO.2020-0111
    [16] TANG ZH Z, LIANG J, XIAO ZH ZH, et al. Three-dimensional digital image correlation system for deformation measurement in experimental mechanics[J]. Optical Engineering, 2010, 49(10): 103601. doi: 10.1117/1.3491204
    [17] TANG ZH Z, LIANG J, XIAO ZH ZH, et al. Large deformation measurement scheme for 3D digital image correlation method[J]. Optics and Lasers in Engineering, 2012, 50(2): 122-130. doi: 10.1016/j.optlaseng.2011.09.018
    [18] 王立忠, 汪耀, 梁晋, 等. 高速三维数字图像法测量手机跌落全场应变[J]. 光学 精密工程,2018,26(9):2174-2180. doi: 10.3788/OPE.20182609.2174

    WANG L ZH, WANG Y, LIANG J, et al. Measurement of full-field strain incell phone dropping test by high-speed 3D digital image correlation method[J]. Optics and Precision Engineering, 2018, 26(9): 2174-2180. (in Chinese) doi: 10.3788/OPE.20182609.2174
  • 加载中
图(19) / 表(2)
计量
  • 文章访问数:  1084
  • HTML全文浏览量:  494
  • PDF下载量:  97
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-06
  • 修回日期:  2021-06-18
  • 网络出版日期:  2021-08-17
  • 刊出日期:  2022-01-19

目录

    /

    返回文章
    返回