Development of a 36-element piezoelectric deformable mirror for synchrotron radiation and its surface control ability
-
摘要: 第4代同步辐射光源及自由电子激光装置中束线光学系统对光学元件性能提出了苛刻的要求。使用压电变形镜是实现超高面形精度调控和实施波前补偿的有效途径,也是目前亟需突破的国产化技术瓶颈。针对这一问题,研制了长度为200 mm、含36个单元压电促动器的压电变形镜。通过数值模拟优化了变形镜结构参数,利用国产工艺完成了变形镜样机的制作,并对其面形调控能力进行初步探究。测试结果表明:所研制变形镜样机的平面面形误差可降低至1.38 nm (rms),斜率误差降低至240 nrad (rms),实现了平面面形的nm级调控。Abstract: Ultra-high quality optical elements are demanded by beamlimes on fourth-generation synchrotron facilities and free-electron laser facilities. A bimorph mirror is effectively used to achieve ultra-high-precision surface profile control and wavefront correction, yet it’s one of the bottlenecks of domestic techniques and must be overcome. In order to accomplish this, a 200 mm long bimorph mirror with 36 elements of piezoelectric actuators was developed. The structure parameters of the bimorph mirror were optimized by numerical simulation, and the bimorph mirror was fabricated by domestic technology. The test results show that the surface profile error and slope error of the bimorph mirror can be reduced to 1.38 nm (rms) and 240 nrad (rms), thus the nanoscale control of the mirror surface profile was realized.
-
Key words:
- bimorph mirror /
- surface profile error /
- synchrotron radiation /
- adaptive optics
-
表 1 变形镜材料参数
Table 1. Material parameters of bimorph mirror
材料 尺寸/mm3 密度/(kg·m−3) 泊松比 杨氏模量/MPa Si 200×55×10 2329 0.28 170000 PZT 200×17.5×d 7500 0.34 63000 表 2 变形镜重复性
Table 2. Repeatability of bimorph mirror
时间/天 0 1 2 3 4 PV/nm 3.75 3.92 3.44 4.03 3.68 rms/nm 1.38 1.53 1.21 1.65 1.51 -
[1] 李晓东, 袁清习, 徐伟, 等. 第四代高能同步辐射光源HEPS及高压相关线站建设[J]. 高压物理学报,2020,34(5):050101. doi: 10.11858/gywlxb.20200554LI X D, YUAN Q X, XU W, et al. Introduction of fourth-generation high energy photon source HEPS and the beamlines for high-pressure research[J]. Chinese Journal of High Pressure Physics, 2020, 34(5): 050101. (in Chinese) doi: 10.11858/gywlxb.20200554 [2] MATSUYAMA S, NAKAMORI H, GOTO T, et al. Nearly diffraction-limited X-ray focusing with variable-numerical-aperture focusing optical system based on four deformable mirrors[J]. Scientific Reports, 2016, 6(1): 24801. doi: 10.1038/srep24801 [3] COCCO D, BORTOLETTO G, SERGO R, et al. A hybrid active optical system for wave front preservation and variable focal distance[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2/3): 128-133. [4] IDIR M, MERCERE P, MODI M H, et al. X-ray active mirror coupled with a Hartmann wavefront sensor[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2010, 616(2/3): 162-171. [5] ALCOCK S G, SUTTER J P, SAWHNEY K J S, et al. Bimorph mirrors: the good, the bad, and the ugly[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators,Spectrometers,Detectors and Associated Equipment, 2013, 710: 87-92. [6] JUNG H, GWEON D G. Creep characteristics of piezoelectric actuators[J]. Review of Scientific Instruments, 2000, 71(4): 1896-1900. doi: 10.1063/1.1150559 [7] SUTTER J P, CHATER P A, SIGNORATO R, et al. 1 m long multilayer-coated deformable piezoelectric bimorph mirror for adjustable focusing of high-energy X-rays[J]. Optics Express, 2019, 27(11): 16121-16142. doi: 10.1364/OE.27.016121 [8] ALCOCK S G, NISTEA I T, SIGNORATO R, et al. Dynamic adaptive X-ray optics. Part I. Time-resolved optical metrology investigation of the bending behaviour of piezoelectric bimorph deformable X-ray mirrors[J]. Journal of Synchrotron Radiation, 2019, 26(Pt 1): 36-44. [9] ALCOCK S G, NISTEA I T, SIGNORATO R, et al. Dynamic adaptive X-ray optics. Part II. High-speed piezoelectric bimorph deformable Kirkpatrick-Baez mirrors for rapid variation of the 2D size and shape of X-ray beams[J]. Journal of Synchrotron Radiation, 2019, 26(Pt 1): 45-51. [10] ALCOCK S G, NISTEA I T, BADAMI V G, et al. High-speed adaptive optics using bimorph deformable X-ray mirrors[J]. Review of Scientific Instruments, 2019, 90(2): 021712. doi: 10.1063/1.5060737 [11] JIANG H, TIAN N X, LIANG D X, et al. A piezoelectric deformable X-ray mirror for phase compensation based on global optimization[J]. Journal of Synchrotron Radiation, 2019, 26(Pt 3): 729-736. [12] ALCOCK S G, NISTEA I, SAWHNEY K. Nano-metrology: the art of measuring X-ray mirrors with slope errors < 100 nrad[J]. Review of Scientific Instruments, 2016, 87(5): 051902. doi: 10.1063/1.4949272 [13] 王建立, 董玉磊, 姚凯男, 等. 349单元自适应光学波前处理器[J]. 光学 精密工程,2018,26(5):1007-1013. doi: 10.3788/OPE.20182605.1007WANG J L, DONG Y L, YAO K N, et al. Three hundred and fourty-nine unit adaptive optical wavefront processor[J]. Optics and Precision Engineering, 2018, 26(5): 1007-1013. (in Chinese) doi: 10.3788/OPE.20182605.1007 [14] 马剑强, 刘莹, 陈俊杰, 等. 200单元硅基单压电变形镜的设计与测试[J]. 光学 精密工程,2014,22(8):2047-2053. doi: 10.3788/OPE.20142208.2047MA J Q, LIU Y, CHEN J J, et al. Design and performance testing of 200-element silicon unimorph deformable mirror[J]. Optics and Precision Engineering, 2014, 22(8): 2047-2053. (in Chinese) doi: 10.3788/OPE.20142208.2047 [15] 林旭东, 刘欣悦, 王建立, 等. 137单元变形镜的性能测试及校正能力实验[J]. 光学 精密工程,2013,21(2):267-273. doi: 10.3788/OPE.20132102.0267LIN X D, LIU X Y, WANG J L, et al. Performance test and experiment of correction capability of 137-element deformable mirror[J]. Optics and Precision Engineering, 2013, 21(2): 267-273. (in Chinese) doi: 10.3788/OPE.20132102.0267 [16] 金利民, 罗红心, 王劼, 等. 双压电片镜在同步辐射光源光学系统中的应用[J]. 中国光学,2017,10(6):699-707. doi: 10.3788/co.20171006.0699JIN L M, LUO H X, WANG J, et al. Application of bimorph mirror in the optical system of synchrotron radiation light source[J]. Chinese Optics, 2017, 10(6): 699-707. (in Chinese) doi: 10.3788/co.20171006.0699 [17] 彭泰然, 李文来, 娄军强, 等. 正电压边缘驱动的双压电片变形镜研制[J]. 光子学报,2019,48(8):0822003. doi: 10.3788/gzxb20194808.0822003PENG T R, LI W L, LOU J Q, et al. Development of a bimorph deformable mirror driven by positive-voltage actuators at edge[J]. Acta Photonica Sinica, 2019, 48(8): 0822003. (in Chinese) doi: 10.3788/gzxb20194808.0822003 [18] NING Y, JIANG W H, LING N, et al. Response function calculation and sensitivity comparison analysis of various bimorph deformable mirrors[J]. Optics Express, 2007, 15(19): 12030-12038. doi: 10.1364/OE.15.012030 [19] 姜文汉. 自适应光学发展综述[J]. 光电工程,2018,45(3):170489.JIANG W H. Overview of adaptive optics development[J]. Opto-Electronic Engineering, 2018, 45(3): 170489. (in Chinese) [20] 张瑶, 汤善治, 李明, 等. 同步辐射中双压电片反射镜的研究现状[J]. 物理学报,2016,65(1):010702. doi: 10.7498/aps.65.010702ZHANG Y, TANG SH ZH, LI M, et al. Present research status of piezoelectric bimorph mirrors in synchrotron radiation sources[J]. Acta Physica Sinica, 2016, 65(1): 010702. (in Chinese) doi: 10.7498/aps.65.010702 [21] ALCOCK S G, NISTEA I, SUTTER J P, et al. Characterization of a next-generation piezo bimorph X-ray mirror for synchrotron beamlines[J]. Journal of Synchrotron Radiation, 2015, 22(1): 10-15. doi: 10.1107/S1600577514020025 [22] ICHII Y, OKADA H, NAKAMORI H, et al. Development of a glue-free bimorph mirror for use in vacuum chambers[J]. Review of Scientific Instruments, 2019, 90(2): 021702. doi: 10.1063/1.5066105