留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超构表面结构色的原理及应用

李墨馨 王丹燕 张诚

李墨馨, 王丹燕, 张诚. 超构表面结构色的原理及应用[J]. 中国光学(中英文), 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108
引用本文: 李墨馨, 王丹燕, 张诚. 超构表面结构色的原理及应用[J]. 中国光学(中英文), 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108
LI Mo-xin, WANG Dan-yan, ZHANG Cheng. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108
Citation: LI Mo-xin, WANG Dan-yan, ZHANG Cheng. Metasurface-based structural color: fundamentals and applications[J]. Chinese Optics, 2021, 14(4): 900-926. doi: 10.37188/CO.2021-0108

超构表面结构色的原理及应用

基金项目: 华中科技大学科研启动基金
详细信息
    作者简介:

    李墨馨(1998—),女,北京人,华中科技大学光学与电子信息学院硕士研究生,2020年于华中科技大学获得学士学位,主要从事超构表面光学器件方面的研究。Email:moxinli@hust.edu.cn

    王丹燕(1989—),女,山东菏泽人,华中科技大学光学与电子信息学院博士后,2012年、2015年于合肥工业大学分别获得学士,硕士学位,2020年在上海交通大学获得博士学位。2018年至2019年在美国密歇根大学安娜堡分校(University of Michigan-Ann Arbor)进行访学。主要从事微纳光子学器件方面的研究。Email:danyanwang@hust.edu.cn

    张 诚(1989—),男,山东济宁人,华中科技大学光学与电子信息学院教授、博士生导师。2010年于山东大学获得学士学位,2016年于美国密歇根大学安娜堡分校(University of Michigan-Ann Arbor)获得博士学位,2016年至2019年在美国国家标准技术研究院(NIST)进行博士后研究。主要从事微纳光子学与微纳加工制造方面的研究。Email:cheng.zhang@hust.edu.cn

  • 中图分类号: TB34

Metasurface-based structural color: fundamentals and applications

Funds: Supported by the startup funding from the Huazhong University of Science and Technology
More Information
  • 摘要: 与传统化学颜料滤光片相比,基于微纳光学结构的滤光片所呈现的颜色不仅纯度高、亮度大而且不易褪色,更重要的是不会对环境产生污染。超构表面结构色滤光片因在光学装饰、彩色显示、成像以及光伏等领域存在潜在的应用价值而受到广泛关注。随着微纳加工技术的进步,基于不同共振机理的超构表面结构色滤光片相继实现。本文首先介绍了基于超构表面产生结构色的三种典型共振机理,然后介绍超构表面结构色滤光片在全彩显示、全息成像、信息加密以及彩色光伏器件等领域的应用现状,最后对超构表面结构色滤光片的发展前景进行展望。

     

  • 图 1  (a)GMRF的结构模型;(b)GMRF的反射光谱;对应反射光谱中边带波长(c)和峰值波长(d)处的入射光在GMRF结构内的光路轨迹以及电场分布(插图)

    Figure 1.  (a) Schematic diagram of the GMRF; (b) reflectance spectrum of GMRF; optical paths and electric field distributions (inset) of the incident light at the sideband wavelength (c) and peak wavelength (d) in the reflectance spectrum, respectively, in the structure of GMRF

    图 2  (a)反射型GMRF的结构模型;(b)对应不同光栅周期的反射光谱;(c)由实验观察到的反射光谱构建的感知颜色[51];(d)透射型GMRF的结构模型;(e)对应R、G和B三种颜色的透射光谱;(f)和(g)分别为B和R颜色滤光片样品的光学图像[52]

    Figure 2.  (a) Schematic diagram of the reflectance GMRF; (b) reflectance spectra of the GMRF with different grating periods; (c) perceived colors constructed from the experimentally observed reflectance spectra[51]; (d) schematic diagram of the transmissive GMRF; (e) transmission spectra for blue、green and red color; optical images of (f) blue and (g) red filter[52]

    图 3  (a)GMRF结构中TE/TM偏振分离现象[38];(b)(c)基于不同偏振态设计的彩色滤光片[57];(d)波导光栅的共振机制[38];(e)(f)基于不同入射角设计的彩色滤光片[42]

    Figure 3.  (a) Diagram showing the TE/TM polarization separation for a GMRF[38]; (b) (c) color filter designed under different polarization states[57]; (d) resonance regimes of waveguide gratings[38]; (e) (f) color filter designed under different incident angles[42]

    图 4  (a)1D超薄Ag光栅滤光片的结构模型;(b)对应不同光栅周期的透射光谱以及制备样品的 SEM 图[72];(c)2D Al光栅阵列滤光片示意图;(d)对应不同光栅周期及偏振态的透射光谱,样品的 SEM 图以及光学图片(插图)[73]

    Figure 4.  (a) Schematic diagram of the ultrathin 1D Ag grating color filter; (b) Measured transmission spectra with different periods and the SEM images of the structure[72]; (c) schematic diagram of the color filter with 2D Al grating; (d) transmission spectra with different periods for different polarization states. The SEM and optical images of the structure (inset)[73].

    图 5  (a)基于漏斗效应结构色滤光片的结构模型;(b)CMY三种颜色所对应的反射光谱;(c)与入射角相关的反射光谱[75];(d)(e)间隙等离子体结构色滤光片的结构模型;(f)南丹麦大学标志的彩色图案[77];(g)串联纳米盘阵列示意图;(h)(i)具有不同半径和周期的反射型和透射型彩色滤光片的光学图像[76]

    Figure 5.  (a) Schematic of the proposed structure based on the light funneling; (b) reflection spectra of the CMY colors[75]; (c) angle dependent reflection spectra with sweeping incident illumination angle from 45° to 75°; (d)(e) schematic diagram of the gap plasmonic color filter; (f) color display of the logo of the University of Southern Denmark[77]; (g) schematic drawing of the tandem nanodisk array; (h) and (i) are optical images of the reflection and transmission color filters with different radii and periods, respectively[76].

    图 6  (a)Au/Ag纳米盘阵列等离子体彩色滤光片结构模型;(b)对应不同磁盘直径D和间隙大小的调色板;(c)制备的Lena图像的光学照片[78];(d)Al纳米盘-纳米孔阵列结构模型;(e)纳米盘和纳米孔之间等离子体模式相互作用的能量图;(f)对应不同纳米柱高度h的反射光谱[79]

    Figure 6.  (a) Schematic diagram of plasmonic color filters composed of Au/Ag nanodisks array; (b) color palette achieved by varying the disk diameter D and gap size; (c) optical micrographs of the Lena image[78]; (d) schematic diagram of Al nanodisk-nanohole arrays; (e) energy diagram illustrating the hybridization of the coupled plasmonic modes of the disks and holes; (f) reflectance spectra for varying the pillar height h[79]

    图 7  (a)三角形晶格圆孔阵列的结构模型;(b)(c)有无PMMA覆盖层时反射光谱的测试结果,插图为样品的光学图片;(d)超构表面横截面处的时间平均磁场强度(彩色轮廓)和电位移(黑色箭头)分布;(e)制作样品的SEM图像。插图:样品的光学图像;(f)无涂层时制备的样品的光学图像[80]

    Figure 7.  (a) Schematic view of triangular-lattice circular hole arrays; (b)(c) measured optical reflectance spectra of three selected metasurfaces without and with PMMA coating. Insets: Optical images of the fabricated samples; (d) cross-section of the time-averaged magnetic field intensity (colored contours) and electric displacement (black arrows) distributions; (e) SEM images of the fabricated metasurface. Inset: optical reflection microscopy image; (f) optical microscopy image of the uncoated plasmonic painting[80]

    图 8  (a)基于Si超构表面结构色滤光片的结构模型;(b)覆盖层分别为空气和DMSO时滤光片结构中电偶极子模和磁偶极子模的电磁场分布;(c)和(d)为覆盖层分别为空气和DMSO时对应不同晶格尺寸时的反射光谱,插图是相应的结构颜色;(e)实验分别记录了108个Si亚表面在空气(三角形)和DMSO(星形)中的调色板[104]

    Figure 8.  (a) Schematic of the Si metasurfaces. (b) The electromagnetic field distributions of electric dipole mode and magnetic dipole mode in air and in refractive index matching layer. (c) and (d) are the calculated reflection spectra of Si metasurface with different lattice sizes in air and in DMSO, respectively. The insets are the corresponding structural color. (e) The experimentally recorded color palettes of 108 Si metasurfaces in air (triangles) and in DMSO (stars), respectively[104]

    图 9  (a) 基于TiO2超构表面结构色的结构模型;(b)对应不同w值的反射光谱,插图为放大后的反射谱;(c)与入射角相关的反射光谱,插图为入射光的偏振方向和入射角大小[105];(d)可切换颜色的超构表面结构色示意图;(e)正入射方式下蓝色反射谱以及对应不同波长和入射角的电场分布[106];(f)全介质彩色滤光片在x偏振光和y偏振光入射下的结构示意图;(g)x偏振光和y偏振光照射下的反射色调色板[107]

    Figure 9.  (a) Schematic of the TiO2-based metasurface; (b) reflection spectra with different w. The inset shows the detail of the resonances; (c) angle-dependent reflection spectra. The inset shows the angle and polarization of the incident light[105]; (d) Schematic of the switchable metasurface; (e) electrical field distributions of the blue metasurface at different wavelengths and incident angles[106]; (f) schematic illustrating the architecture of all-dielectric color filter under x-polarized and y-polarized incidence; (g) color palettes show reflected color illuminated under x-polarized and y-polarized light[107]

    图 10  (a)铝等离子体结构色的结构模型;(b)颜色混合调色板;(c)全彩打印的莫奈作品《日出·印象》[108];(d)硅、铝、银纳米盘的颜色比较;(e)(f)梵高作品《自画像》、爱德华作品《呐喊》的硅结构色复制品[99]

    Figure 10.  (a) Schematic illustrating the architecture of aluminum plasmonic pixels; (b) mixing color palette; (c) reproduction of Monet` s Impression, Sunrise[108]; (d) color comparison of Si, Al, and Ag nanodisks; (e) (f) Si structural color painting reproduction of Self-Portrait, by Vincent Van Gogh and The Scream, by Edvard Munch[99]

    图 11  (a)二氧化钛半波片超构表面实现颜色亮度调谐的工作原理示意;(b)RGB色结构在不同长轴取向角θ下的透射光谱;(c)(d)无偏振片时样品图像的反射光学显微图,以及黑框区域的SEM图像;(e)维米尔作品《戴珍珠耳环的少女》的结构色复制品,比例尺为50 μm[109]

    Figure 11.  (a) Schematics of the TiO2 metasurface setup enabling brightness tunning; (b) the calculated transmission for RGB colors with different orientation angle θ; (c) (d) optical image of the fabricated pattern in reflection mode without any polarizers, and the scanning electron micrograph (SEM) of the highlighted area; (e) experimental color printing of Girl With A Pearl Earring, by Johannes Vermeer. Scale bar represents 50 μm[109].

    图 12  (a)功能复用非晶硅超构表面的示意图;(b)超构表面的基本结构单元以及对应的透射率、透射相位;(c)超构表面样品的设计与实验结果[110];(d)银基等离子体浅光栅的结构示意图,RGB模拟反射光谱,以及混色系统的示意;(e)样品的SEM图像,以及解密后近场显示的金刚鹦鹉光学图像;(f)三通道的全息图像,以及整合解密后得到的二维码信息[111]

    Figure 12.  (a) Schematic illustration of the Si metasurface that integrates dual working modes; (b) schematic of the two types of meta-atoms, and the corresponding phase change and transmittance; (c) design and the experimental results[110]; (d) Schematic illustration of proposed plasmonic shallow gratings, simulated spectra of RGB colors, and schematic illustration of color adjustment; (e) SEM images of complete structures, and an optical image of the fabricated macaw metamark with the decryption device; (f) measured holographic images under 3 coherent illumination, and the decrypted QR code from them[111].

    图 13  (a)偏振编码成像硅纳米半波片超构表面的工作原理;(b)响应波长与方位角不同的硅半波片阵列;(c)无/有分析器(偏振片)时观测得到的彩色图像;(d)单向倾斜锗纳米柱阵列超构表面的偏振颜色转换机制;(e)制作在弯曲酒瓶表面上的偏振显示防伪码,左右分别为肉眼观察和经过偏振片观察的结果(图像在室外拍摄)[112, 113]

    Figure 13.  (a) Schematics for the polarization encoded color image; (b) nanoblock dirtributions of metasurfaces to generate desired polarization distribution; (c) experimental results without/with analyzer (polarizer) decoding; (d) schematic of color switching mechanism of porous nanocolumns (PNCs) for different views of in-plane orientation; (e) covert display label on a curved surface of a wine bottleneck in outdoor environment[112, 113]

    图 14  (a)引入超构表面反射镜的meta-OLED结构示意图;(b)不同纳米柱阵列周期的meta-OLED测试单元,以及meta-OLEDs(实线)与带有红绿蓝滤色片的白光OLEDs(虚线)的对比;(c)极小规模下磁场强度的仿真结果[114]

    Figure 14.  (a) Schematic diagram of meta-OLED design with a metasurface mirror; (b) meta-OLED test cell consist of different nanopillar arrays pitches, and comparison between meta-OLEDs (solid curves) and color-filtered white OLEDs (dashed curves); (c) simulated H-field distribution on the critically downscaled metamirrors[114]

    图 15  (a)光伏/结构色双功能设备的结构示意图,插图为显示CMY三原色的实际样品;(b)结构色性能的角度敏感性测试,考虑了入射面垂直于和平行于光栅结构的情况,以及光伏性能的测试[115]

    Figure 15.  (a) Schematic of energy-generating photovoltaic/structural color filters dual-function devices. The inset images are fabricated CMY color samples; (b) test of angle dependence of reflective colors, considering both incident directions of perpendicular and parallel to the metal nanogratings, and photovoltaic behaviors test[115].

    图 16  (a)利用镁的氢化/脱氢实现横向动态扫描的等离子体彩色显示设备[119];(b)利用硅的氧化实现全介电结构色的动态调谐[120];(c)通过H+/O离子注入实现的TiO2超构表面结构色在鲜艳与灰暗之间转换[121]

    Figure 16.  (a) Schematic of the scanning plasmonic color display, which could be laterally switched on/off through directional hydrogenation/dehydrogenation of a magnesium screen[119]; (b) dynamic control of all-dielectric pixel color through Si oxidation[120]; (c) converting betweenTiO2 metasurfaces and black TiO2 metasurfaces enabled by H+/O ion implantation[121]

    图 17  (a)Au-Ag核-壳结构等离子体颜色的示意图,其中,Ag壳厚度由电化学沉积时间决定[122];(b)通过机械拉伸柔性聚二甲基硅氧烷衬底的动态可调全介电TiO2超构表面[123];(c)微电子机械系统控制的悬浮硅纳米阵列,实现介电结构色的动态控制[124]

    Figure 17.  (a) Schematic of Au-Ag core-shell nanoparticle array, the thickness of the Ag shell could be changed by alternating the electrochemical deposition time[122]; (b) mechanical stretching tunable all-dielectric TiO2 metasurface in a flexible polydimethylsiloxane substrate[123]; (c) temporal color control from microelectromechanical movement of suspended silicon antenna arrays[124]

    图 18  (a)集成了电控液晶分子层与不对称矩形孔隙的超构表面,其中,液晶分子层作为偏振面旋转器调控入射光的偏振方向,实现单像素中两种原色动态混色的显示效果[125];(b)微流控可重构全介电TiO2超构表面,通过向聚合物微流控通道注入不同折射率的溶液,实现结构色的实时调谐[126]

    Figure 18.  (a) Asymmetric-lattice nanohole array integrated with a liquid crystal electrically controlled polarization rotator, enabling color mixing by modulating the polarization of the incident light[125]; (b) microfluidic reconfigurable all-dielectric TiO2 metasurfaces. By injecting solutions with a different refractive index, realizing real-time tunable structural colors[126]

  • [1] DICK D J, SHAY T M. Ultrahigh-noise rejection optical filter[J]. Optics Letters, 1991, 16(11): 867-869. doi: 10.1364/OL.16.000867
    [2] PHILIP J, JAYKUMAR T, KALYANASUNDARAM P, et al. A tunable optical filter[J]. Measurement Science and Technology, 2003, 14(8): 1289-1294. doi: 10.1088/0957-0233/14/8/314
    [3] RAKULJIC G A, LEYVA V. Volume holographic narrow-band optical filter[J]. Optics Letters, 1993, 18(6): 459-461. doi: 10.1364/OL.18.000459
    [4] UENUMA M, MOTOOKA T. Temperature-independent silicon waveguide optical filter[J]. Optics Letters, 2009, 34(5): 599-601. doi: 10.1364/OL.34.000599
    [5] EMADI A, WU H, DE GRAAF G, et al. An UV linear variable optical filter-based micro-spectrometer[J]. Procedia Engineering, 2010, 5: 416-419. doi: 10.1016/j.proeng.2010.09.135
    [6] CORREIA J H, EMADI A R, WOLFFENBUTTEL R F. UV bandpass optical filter for microspectometers[J]. ECS Transactions, 2007, 4(1): 141-147.
    [7] IORDANOV V P, LUBKING G W, ISHIHARA R, et al. Silicon thin-film UV filter for NADH fluorescence analysis[J]. Sensors and Actuators A:Physical, 2002, 97-98: 161-166. doi: 10.1016/S0924-4247(01)00848-2
    [8] GE P F, LIANG X, WANG J H, et al. Optical filter designs for multi-color visible light communication[J]. IEEE Transactions on Communications, 2019, 67(3): 2173-2187. doi: 10.1109/TCOMM.2018.2883422
    [9] SUNG J Y, CHOW C W, YEH C H. Is blue optical filter necessary in high speed phosphor-based white light LED visible light communications?[J]. Optics Express, 2014, 22(17): 20646-20651. doi: 10.1364/OE.22.020646
    [10] BAQIR M A, CHOUDHURY P K, FATIMA T, et al. Graphene-over-graphite-based metamaterial structure as optical filter in the visible regime[J]. Optik, 2019, 180: 832-839. doi: 10.1016/j.ijleo.2018.12.005
    [11] SHEN F, KANG Q L, WANG J J, et al. Dielectric metasurface-based high-efficiency mid-infrared optical filter[J]. Nanomaterials, 2018, 8(11): 938. doi: 10.3390/nano8110938
    [12] ELSAYED H A. A multi-channel optical filter by means of one dimensional n doped semiconductor dielectric photonic crystals[J]. Materials Chemistry and Physics, 2018, 216: 191-196. doi: 10.1016/j.matchemphys.2018.06.016
    [13] VANYUKOV V V, MIKHEEV G M, MOGILEVA T N, et al. Near-IR nonlinear optical filter for optical communication window[J]. Applied Optics, 2015, 54(11): 3290-3293. doi: 10.1364/AO.54.003290
    [14] ABE T, MURAKAMI Y, YAMAGUCHI M, et al. Color correction of pathological images based on dye amount quantification[J]. Optical Review, 2005, 12(4): 293-300. doi: 10.1007/s10043-005-0293-6
    [15] CHAUHAN S S, SHARMA A L, JASRA R V. Photofunctions of dye encapsulated nanostructured silica films suitable for optical filter application[J]. Materials Science Forum, 2013, 757: 257-269. doi: 10.4028/www.scientific.net/MSF.757.257
    [16] CHOI J, KIM S H, LEE W, et al. Synthesis and characterization of thermally stable dyes with improved optical properties for dye-based LCD color filters[J]. New Journal of Chemistry, 2012, 36(3): 812-818. doi: 10.1039/c2nj20938a
    [17] JI CH G, ZHANG ZH, MASUDA T, et al. Vivid-colored silicon solar panels with high efficiency and non-iridescent appearance[J]. Nanoscale Horizons, 2019, 4(4): 874-880. doi: 10.1039/C8NH00368H
    [18] LEE K T, LEE J Y, SEO S, et al. Colored ultrathin hybrid photovoltaics with high quantum efficiency[J]. Light:Science &Applications, 2014, 3(10): e215.
    [19] QIU Y B, ZHAN L, HU X, et al. Demonstration of color filters for OLED display based on extraordinary optical transmission through periodic hole array on metallic film[J]. Displays, 2011, 32(5): 308-312. doi: 10.1016/j.displa.2011.05.011
    [20] GHOBADI A, HAJIAN H, SOYDAN M C, et al. Lithography-free planar band-pass reflective color filter using a series connection of cavities[J]. Scientific Reports, 2019, 9(1): 290. doi: 10.1038/s41598-018-36540-8
    [21] GOMES DE SOUZA I L, RODRIGUEZ-ESQUERRE V F. Design of planar and wideangle resonant color absorbers for applications in the visible spectrum[J]. Scientific Reports, 2019, 9(1): 7045. doi: 10.1038/s41598-019-43539-2
    [22] JI CH G, LEE K T, GUO L J. High-color-purity, angle-invariant, and bidirectional structural colors based on higher-order resonances[J]. Optics Letters, 2019, 44(1): 86-89. doi: 10.1364/OL.44.000086
    [23] KIM Y, SON J, SHAFIAN S, et al. Semitransparent blue, green, and red organic solar cells using color filtering electrodes[J]. Advanced Optical Materials, 2018, 6(13): 1800051. doi: 10.1002/adom.201800051
    [24] LEE J Y, LEE K T, SEO S, et al. Decorative power generating panels creating angle insensitive transmissive colors[J]. Scientific Reports, 2014, 4: 4192.
    [25] LEE K T, HAN S Y, LI Z J, et al. Flexible high-color-purity structural color filters based on a higher-order optical resonance suppression[J]. Scientific Reports, 2019, 9(1): 14917. doi: 10.1038/s41598-019-51165-1
    [26] LEE K T, KANG D, PARK H J, et al. Design of polarization-independent and wide-angle broadband absorbers for highly efficient reflective structural color filters[J]. Materials, 2019, 12(7): 1050. doi: 10.3390/ma12071050
    [27] LI ZH Y, BUTUN S, AYDIN K. Large-area, lithography-free super absorbers and color filters at visible frequencies using ultrathin metallic films[J]. ACS Photonics, 2015, 2(2): 183-188. doi: 10.1021/ph500410u
    [28] LIN Z H, LONG Y X, ZHU X P, et al. Extending the color of ultra-thin gold films to blue region via Fabry-Pérot-Cavity-Resonance-Enhanced reflection[J]. Optik, 2019, 178: 992-998. doi: 10.1016/j.ijleo.2018.09.184
    [29] LIU F, SHI H M, ZHU X P, et al. Tunable reflective color filters based on asymmetric Fabry-Perot cavities employing ultrathin Ge2Sb2Te5 as a broadband absorber[J]. Applied Optics, 2018, 57(30): 9040-9045. doi: 10.1364/AO.57.009040
    [30] MAO K N, SHEN W D, YANG CH Y, et al. Angle insensitive color filters in transmission covering the visible region[J]. Scientific Reports, 2016, 6: 19289. doi: 10.1038/srep19289
    [31] WANG Y S, ZHU X P, CHEN Y Q, et al. Fabrication of Fabry-Perot-cavity-based monolithic full-color filter arrays using a template-confined micro-reflow process[J]. Journal of Micromechanics and Microengineering, 2019, 29(2): 025008. doi: 10.1088/1361-6439/aaf6cb
    [32] WEI CH W, ABEDINI DERESHGI S, SONG X L, et al. Polarization reflector/color filter at visible frequencies via anisotropic α-MoO3[J]. Advanced Optical Materials, 2020, 8(11): 2000088. doi: 10.1002/adom.202000088
    [33] YANG ZH M, CHEN Y Q, ZHOU Y M, et al. Microscopic interference full-color printing using grayscale-patterned Fabry-Perot resonance cavities[J]. Advanced Optical Materials, 2017, 5(10): 1700029. doi: 10.1002/adom.201700029
    [34] ZHOU J, GUO L J. Transition from a color filter to a polarizer of a metallic nano-slit array[C]. Proceedings of the 2013 IEEE Photonics Conference, IEEE, 2013: 180-181.
    [35] FEHREMBACH A L, SENTENAC A. Study of waveguide grating eigenmodes for unpolarized filtering applications[J]. Journal of the Optical Society of America A, 2003, 20(3): 481-488. doi: 10.1364/JOSAA.20.000481
    [36] RAYLEIGH L. III. Note on the remarkable case of diffraction spectra described by Prof. Wood[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1907, 14(79): 60-65. doi: 10.1080/14786440709463661
    [37] SHARON A, ROSENBLATT D, FRIESEM A A, et al. Light modulation with resonant grating-waveguide structures[J]. Optics Letters, 1996, 21(19): 1564-1566. doi: 10.1364/OL.21.001564
    [38] WANG S S, MAGNUSSON R. Theory and applications of guided-mode resonance filters[J]. Applied Optics, 1993, 32(14): 2606-2613. doi: 10.1364/AO.32.002606
    [39] HEGEDUS Z, NETTERFIELD R. Low sideband guided-mode resonant filter[J]. Applied Optics, 2000, 39(10): 1469-1473. doi: 10.1364/AO.39.001469
    [40] BOONRUANG S, GREENWELL A, MOHARAM M G. Multiline two-dimensional guided-mode resonant filters[J]. Applied Optics, 2006, 45(22): 5740-5747. doi: 10.1364/AO.45.005740
    [41] BRUNDRETT D L, GLYTSIS E N, GAYLORD T K. Normal-incidence guided-mode resonant grating filters: design and experimental demonstration[J]. Optics Letters, 1998, 23(9): 700-702. doi: 10.1364/OL.23.000700
    [42] UDDIN M J, MAGNUSSON R. Efficient guided-mode-resonant tunable color filters[J]. IEEE Photonics Technology Letters, 2012, 24(17): 1552-1554. doi: 10.1109/LPT.2012.2208453
    [43] LIU Z S, TIBULEAC S, SHIN D, et al. High-efficiency guided-mode resonance filter[J]. Optics Letters, 1998, 23(19): 1556-1558. doi: 10.1364/OL.23.001556
    [44] TIBULEAC S, MAGNUSSON R. Reflection and transmission guided-mode resonance filters[J]. Journal of the Optical Society of America A, 1997, 14(7): 1617-1626. doi: 10.1364/JOSAA.14.001617
    [45] MIZUTANI A, KIKUTA H, NAKAJIMA K, et al. Nonpolarizing guided-mode resonant grating filter for oblique incidence[J]. Journal of the Optical Society of America A, 2001, 18(6): 1261-1266. doi: 10.1364/JOSAA.18.001261
    [46] WANG D Y, WANG Q K, WU M T. Spectral characteristics of a guided mode resonant filter with planes of incidence[J]. Applied Optics, 2018, 57(27): 7793-7797. doi: 10.1364/AO.57.007793
    [47] QIAN L Y, ZHANG D W, TAO CH X, et al. Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching[J]. Optics Letters, 2016, 41(5): 982-985. doi: 10.1364/OL.41.000982
    [48] WANG CH T, HOU H H, CHANG P C, et al. Full-color reflectance-tunable filter based on liquid crystal cladded guided-mode resonant grating[J]. Optics Express, 2016, 24(20): 22892-22898. doi: 10.1364/OE.24.022892
    [49] WANG Q, ZHANG D W, XU B L, et al. Colored image produced with guided-mode resonance filter array[J]. Optics Letters, 2011, 36(23): 4698-4700. doi: 10.1364/OL.36.004698
    [50] KAZANSKIY N L, SERAFIMOVICH P G, KHONINA S N. Harnessing the guided-mode resonance to design nanooptical transmission spectral filters[J]. Optical Memory and Neural Networks, 2010, 19(4): 318-324. doi: 10.3103/S1060992X10040090
    [51] UDDIN M J, MAGNUSSON R. Highly efficient color filter array using resonant Si3N4 gratings[J]. Optics Express, 2013, 21(10): 12495-12506. doi: 10.1364/OE.21.012495
    [52] KAPLAN A F, XU T, JAY GUO L. High efficiency resonance-based spectrum filters with tunable transmission bandwidth fabricated using nanoimprint lithography[J]. Applied Physics Letters, 2011, 99(14): 143111. doi: 10.1063/1.3647633
    [53] ELIKKOTTIL A, TAHERSIMA M H., GUPTA M. V. N. S, et al. A Spectrally tunable dielectric subwavelength grating based broadband planar light concentrator[J]. Scientific Reports, 2019, 9: 11723.
    [54] YOON Y T, PARK C H, LEE S S. Highly efficient color filter incorporating a thin metal-dielectric resonant structure[J]. Applied Physics Express, 2012, 5(2): 022501. doi: 10.1143/APEX.5.022501
    [55] SHYIQ AMIN M, WOONG YOON J, MAGNUSSON R. Optical transmission filters with coexisting guided-mode resonance and Rayleigh anomaly[J]. Applied Physics Letters, 2013, 103(13): 131106. doi: 10.1063/1.4823532
    [56] SAKAT E, VINCENT G, GHENUCHE P, et al. Guided mode resonance in subwavelength metallodielectric free-standing grating for bandpass filtering[J]. Optics Letters, 2011, 36(16): 3054-3056. doi: 10.1364/OL.36.003054
    [57] UDDIN M J, KHALEQUE T, MAGNUSSON R. Guided-mode resonant polarization-controlled tunable color filters[J]. Optics Express, 2014, 22(10): 12307-12315. doi: 10.1364/OE.22.012307
    [58] BARNES W L. Surface plasmon-polariton length scales: a route to sub-wavelength optics[J]. Journal of Optics A:Pure and Applied Optics, 2006, 8(4): S87-S93. doi: 10.1088/1464-4258/8/4/S06
    [59] BARNES W L, DEREUX A, EBBESEN T W. Surface plasmon subwavelength optics[J]. Nature, 2003, 424(6950): 824-830. doi: 10.1038/nature01937
    [60] OZBAY E. Plasmonics: merging photonics and electronics at nanoscale dimensions[J]. Science, 2006, 311(5758): 189-193. doi: 10.1126/science.1114849
    [61] LIAO H B, XIAO R F, WANG H, et al. Large third-order optical nonlinearity in Au: TiO2 composite films measured on a femtosecond time scale[J]. Applied Physics Letters, 1998, 72(15): 1817-1819. doi: 10.1063/1.121193
    [62] NIE SH M, EMORY S R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering[J]. Science, 1997, 275(5303): 1102-1106. doi: 10.1126/science.275.5303.1102
    [63] RICARD D, ROUSSIGNOL P, FLYTZANIS C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 1985, 10(10): 511-513. doi: 10.1364/OL.10.000511
    [64] EBBESEN T W, LEZEC H J, GHAEMI H F, et al. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature, 1998, 391(6668): 667-669. doi: 10.1038/35570
    [65] MARTÍN-MORENO L, GARCÍA-VIDAL F J, LEZEC H J, et al. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Physical Review Letters, 2001, 86(6): 1114-1117. doi: 10.1103/PhysRevLett.86.1114
    [66] HOMOLA J, YEE S S, GAUGLITZ G. Surface plasmon resonance sensors: review[J]. Sensors and Actuators B:Chemical, 1999, 54(1-2): 3-15. doi: 10.1016/S0925-4005(98)00321-9
    [67] MAYER K M, HAFNER J H. Localized surface plasmon resonance sensors[J]. Chemical Reviews, 2011, 111(6): 3828-3857. doi: 10.1021/cr100313v
    [68] HUTTER E, FENDLER J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 2004, 16(19): 1685-1706. doi: 10.1002/adma.200400271
    [69] LIEDBERG B, NYLANDER C, LUNSTRÖM I. Surface plasmon resonance for gas detection and biosensing[J]. Sensors and Actuators, 1983, 4: 299-304. doi: 10.1016/0250-6874(83)85036-7
    [70] PATTNAIK P. Surface plasmon resonance: applications in understanding receptor-ligand interaction[J]. Applied Biochemistry and Biotechnology, 2005, 126(2): 79-92. doi: 10.1385/ABAB:126:2:079
    [71] HOMOLA J. Present and future of surface plasmon resonance biosensors[J]. Analytical and Bioanalytical Chemistry, 2003, 377(3): 528-539. doi: 10.1007/s00216-003-2101-0
    [72] ZENG B B, GAO Y K, BARTOLI F J. Ultrathin nanostructured metals for highly transmissive plasmonic subtractive color filters[J]. Scientific Reports, 2013, 3: 2840. doi: 10.1038/srep02840
    [73] SHRESTHA V R, LEE S S, KIM E S, et al. Aluminum plasmonics based highly transmissive polarization-independent subtractive color filters exploiting a nanopatch array[J]. Nano Letters, 2014, 14(11): 6672-6678. doi: 10.1021/nl503353z
    [74] ZHANG J X, ZHANG L D, XU W. Surface plasmon polaritons: physics and applications[J]. Journal of Physics D:Applied Physics, 2012, 45(11): 113001. doi: 10.1088/0022-3727/45/11/113001
    [75] WU Y K R, HOLLOWELL A E, ZHANG CH, et al. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit[J]. Scientific Reports, 2013, 3: 1194. doi: 10.1038/srep01194
    [76] WANG H, WANG X L, YAN CH, et al. Full color generation using silver tandem nanodisks[J]. ACS Nano, 2017, 11(5): 4419-4427. doi: 10.1021/acsnano.6b08465
    [77] ROBERTS A S, PORS A, ALBREKTSEN O, et al. Subwavelength plasmonic color printing protected for ambient use[J]. Nano Letters, 2014, 14(2): 783-787. doi: 10.1021/nl404129n
    [78] KUMAR K, DUAN H G, HEGDE R S, et al. Printing colour at the optical diffraction limit[J]. Nature Nanotechnology, 2012, 7(9): 557-561. doi: 10.1038/nnano.2012.128
    [79] CLAUSEN J S, HØJLUND-NIELSEN E, CHRISTIANSEN A B, et al. Plasmonic metasurfaces for coloration of plastic consumer products[J]. Nano Letters, 2014, 14(8): 4499-4504. doi: 10.1021/nl5014986
    [80] CHENG F, GAO J, LUK T S, et al. Structural color printing based on plasmonic metasurfaces of perfect light absorption[J]. Scientific Reports, 2015, 5: 11045. doi: 10.1038/srep11045
    [81] GOUESBET G, GRÉHAN G. Corrections for Mie theory given in “The Scattering of Light and Other Electromagnetic Radiation”: comments[J]. Applied Optics, 1984, 23(24): 4462_1-4464. doi: 10.1364/AO.23.4462_1
    [82] WRIEDT T. Mie theory: a review[M]//HERGERT W, WRIEDT T. The Mie Theory: Basics and Applications. Berlin Heidelberg: Springer, 2012: 53-71.
    [83] STEINKE J M, SHEPHERD A P. Comparison of Mie theory and the light scattering of red blood cells[J]. Applied Optics, 1988, 27(19): 4027-4033. doi: 10.1364/AO.27.004027
    [84] LAVEN P. Simulation of rainbows, coronas, and glories by use of Mie theory[J]. Applied Optics, 2003, 42(3): 436-444. doi: 10.1364/AO.42.000436
    [85] UNGUT A, GREHAN G, GOUESBET G. Comparisons between geometrical optics and Lorenz-Mie theory[J]. Applied Optics, 1981, 20(17): 2911-2918. doi: 10.1364/AO.20.002911
    [86] LOCK J A, GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Journal of Quantitative Spectroscopy and Radiative Transfer, 2009, 110(11): 800-807. doi: 10.1016/j.jqsrt.2008.11.013
    [87] FU Q, SUN W B. Mie theory for light scattering by a spherical particle in an absorbing medium[J]. Applied Optics, 2001, 40(9): 1354-1361. doi: 10.1364/AO.40.001354
    [88] GOUESBET G. Generalized Lorenz-Mie theory and applications[J]. Particle &Particle Systems Characterization, 1994, 11(1): 22-34.
    [89] GOUESBET G, GRÉHAN G. Generalized Lorenz-Mie theory for a sphere with an eccentrically located spherical inclusion[J]. Journal of Modern Optics, 2000, 47(5): 821-837. doi: 10.1080/09500340008235093
    [90] MACKOWSKI D. The extension of mie theory to multiple spheres[M]//HERGERT W, WRIEDT T. The Mie Theory: Basics and Applications. Berlin Heidelberg: Springer, 2012: 223-256.
    [91] GOUESBET G, GREHAN G. Generalized Lorenz-Mie theory for assemblies of spheres and aggregates[J]. Journal of Optics A:Pure and Applied Optics, 1999, 1(6): 706-712. doi: 10.1088/1464-4258/1/6/309
    [92] REN K F, GRÉHAN G, GOUESBET G. Scattering of a Gaussian beam by an infinite cylinder in the framework of generalized Lorenz-Mie theory: formulation and numerical results[J]. Journal of the Optical Society of America A, 1997, 14(11): 3014-3025. doi: 10.1364/JOSAA.14.003014
    [93] GOUESBET G, MEES L. Generalized Lorenz-Mie theory for infinitely long elliptical cylinders[J]. Journal of the Optical Society of America A, 1999, 16(6): 1333-1341. doi: 10.1364/JOSAA.16.001333
    [94] GOUESBET G. Validity of the localized approximation for arbitrary shaped beams in the generalized Lorenz-Mie theory for spheres[J]. Journal of the Optical Society of America A, 1999, 16(7): 1641-1650. doi: 10.1364/JOSAA.16.001641
    [95] GOUESBET G, MEES L. Validity of the elliptical cylinder localized approximation for arbitrary shaped beams in generalized Lorenz-Mie theory for elliptical cylinders[J]. Journal of the Optical Society of America A, 1999, 16(12): 2946-2958. doi: 10.1364/JOSAA.16.002946
    [96] GOUESBET G, GRÉHAN G, REN K F. Rigorous justification of the cylindrical localized approximation to speed up computations in the generalized Lorenz-Mie theory for cylinders[J]. Journal of the Optical Society of America A, 1998, 15(2): 511-523. doi: 10.1364/JOSAA.15.000511
    [97] CAO L Y, WHITE J S, PARK J S, et al. Engineering light absorption in semiconductor nanowire devices[J]. Nature Materials, 2009, 8(8): 643-647. doi: 10.1038/nmat2477
    [98] CAO L Y, FAN P Y, BARNARD E S, et al. Tuning the color of silicon nanostructures[J]. Nano Letters, 2010, 10(7): 2649-2654. doi: 10.1021/nl1013794
    [99] FLAURAUD V, REYES M, PANIAGUA-DOMÍNGUEZ R, et al. Silicon nanostructures for bright field full color prints[J]. ACS Photonics, 2017, 4(8): 1913-1919. doi: 10.1021/acsphotonics.6b01021
    [100] NAGASAKI Y, SUZUKI M, TAKAHARA J. All-dielectric dual-color pixel with subwavelength resolution[J]. Nano Letters, 2017, 17(12): 7500-7506. doi: 10.1021/acs.nanolett.7b03421
    [101] PARK C S, SHRESTHA V R, YUE W J, et al. Structural color filters enabled by a dielectric metasurface incorporating hydrogenated amorphous silicon nanodisks[J]. Scientific Reports, 2017, 7(1): 2556. doi: 10.1038/s41598-017-02911-w
    [102] PROUST J, BEDU F, GALLAS B, et al. All-dielectric colored metasurfaces with silicon Mie resonators[J]. ACS Nano, 2016, 10(8): 7761-7767. doi: 10.1021/acsnano.6b03207
    [103] ZHU X L, YAN W, LEVY U, et al. Resonant laser printing of structural colors on high-index dielectric metasurfaces[J]. Science Advances, 2017, 3(5): e1602487. doi: 10.1126/sciadv.1602487
    [104] YANG W H, XIAO S M, SONG Q H, et al. All-dielectric metasurface for high-performance structural color[J]. Nature Communications, 2020, 11: 1864.
    [105] SUN SH, ZHOU ZH X, ZHANG CH, et al. All-dielectric full-color printing with TiO2 metasurfaces[J]. ACS Nano, 2017, 11(5): 4445-4452.
    [106] LIU H, YANG H, LI Y R, et al. Switchable All-dielectric metasurfaces for full-color reflective display[J]. Advanced Optical Materials, 2019, 7(8): 1801639.
    [107] YANG B, LIU W W, LI ZH CH, et al. Polarization-sensitive structural colors with hue-and-saturation tuning based on all-dielectric nanopixels[J]. Advanced Optical Materials, 2018, 6(4): 1701009.
    [108] TAN S J, ZHANG L, ZHU D, et al. Plasmonic color palettes for photorealistic printing with aluminum nanostructures[J]. Nano Letters, 2014, 14(7): 4023-4029. doi: 10.1021/nl501460x
    [109] HUO P CH, SONG M W, ZHU W Q, et al. Photorealistic full-color nanopainting enabled by a low-loss metasurface[J]. Optica, 2020, 7(9): 1171-1172. doi: 10.1364/OPTICA.403092
    [110] WEI Q SH, SAIN B, WANG Y T, et al. Simultaneous spectral and spatial modulation for color printing and holography using all-dielectric metasurfaces[J]. Nano Letters, 2019, 19(12): 8964-8971. doi: 10.1021/acs.nanolett.9b03957
    [111] ZHANG F, PU M B, GAO P, et al. Simultaneous full-color printing and holography enabled by centimeter-scale plasmonic metasurfaces[J]. Advanced Science, 2020, 7(10): 1903156. doi: 10.1002/advs.201903156
    [112] ZANG X F, DONG F L, YUE F Y, et al. Polarization encoded color image embedded in a dielectric metasurface[J]. Advanced Materials, 2018, 30(21): 1707499. doi: 10.1002/adma.201707499
    [113] KO J H, YOO Y J, KIM Y J, et al. Flexible, large-area covert polarization display based on ultrathin lossy nanocolumns on a metal film[J]. Advanced Functional Materials, 2020, 30(11): 1908592. doi: 10.1002/adfm.201908592
    [114] JOO W J, KYOUNG J, ESFANDYARPOUR M, et al. Metasurface-driven OLED displays beyond 10, 000 pixels per inch[J]. Science, 2020, 370(6515): 459-463. doi: 10.1126/science.abc8530
    [115] PARK H J, XU T, LEE J Y, et al. Photonic color filters integrated with organic solar cells for energy harvesting[J]. ACS Nano, 2011, 5(9): 7055-7060. doi: 10.1021/nn201767e
    [116] HUERTAS R, ÁNGEL MARTÍNEZ-DOMINGO M, VALERO E M, et al. Metasurface-based contact lenses for color vision deficiency: comment[J]. Optics Letters, 2020, 45(18): 5117-5118. doi: 10.1364/OL.394717
    [117] SHAH Y D, CONNOLLY P W R, GRANT J P, et al. Ultralow-light-level color image reconstruction using high-efficiency plasmonic metasurface mosaic filters[J]. Optica, 2020, 7(6): 632-639. doi: 10.1364/OPTICA.389905
    [118] SONG H Y, MA Y G, HAN Y B, et al. Deep-learned broadband encoding stochastic filters for computational spectroscopic instruments[J]. Advanced Theory and Simulations, 2021, 4(3): 2000299. doi: 10.1002/adts.202000299
    [119] DUAN X Y, LIU N. Scanning plasmonic color display[J]. ACS Nano, 2018, 12(8): 8817-8823. doi: 10.1021/acsnano.8b05467
    [120] NAGASAKI Y, SUZUKI M, HOTTA I, et al. Control of Si-based all-dielectric printing color through oxidation[J]. ACS Photonics, 2018, 5(4): 1460-1466. doi: 10.1021/acsphotonics.7b01467
    [121] WU Y K, YANG W H, FAN Y B, et al. TiO2 metasurfaces: from visible planar photonics to photochemistry[J]. Science Advances, 2019, 5(11): eaax0939. doi: 10.1126/sciadv.aax0939
    [122] FENG Z Y, JIANG CH, HE Y, et al. Widely adjustable and quasi-reversible electrochromic device based on core-shell Au-Ag plasmonic nanoparticles[J]. Advanced Optical Materials, 2014, 2(12): 1174-1180. doi: 10.1002/adom.201400260
    [123] ZHANG CH, JING J X, WU Y K, et al. Stretchable all-dielectric metasurfaces with polarization-insensitive and full-spectrum response[J]. ACS Nano, 2020, 14(2): 1418-1426. doi: 10.1021/acsnano.9b08228
    [124] HOLSTEEN A L, CIHAN A F, BRONGERSMA M L. Temporal color mixing and dynamic beam shaping with silicon metasurfaces[J]. Science, 2019, 365(6450): 257-260. doi: 10.1126/science.aax5961
    [125] LEE Y, PARK M K, KIM S, et al. Electrical broad tuning of plasmonic color filter employing an asymmetric-lattice nanohole array of metasurface controlled by polarization rotator[J]. ACS Photonics, 2017, 4(8): 1954-1966. doi: 10.1021/acsphotonics.7b00249
    [126] SUN SH, YANG W H, ZHANG CH, et al. Real-time tunable colors from microfluidic reconfigurable all-dielectric metasurfaces[J]. ACS Nano, 2018, 12(3): 2151-2159. doi: 10.1021/acsnano.7b07121
    [127] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint of sub‐25 nm vias and trenches in polymers[J]. Applied Physics Letters, 1995, 67(21): 3114-3116. doi: 10.1063/1.114851
    [128] CHOU S Y, KRAUSS P R, RENSTROM P J. Imprint lithography with 25-nanometer resolution[J]. Science, 1996, 272(5258): 85-87. doi: 10.1126/science.272.5258.85
    [129] KRAUSS P R, CHOU S Y. Sub-10 nm imprint lithography and applications[C]. Proceedings of the 1997 55th Annual Device Research Conference Digest, IEEE, 1997.
    [130] AHN S H, KIM J S, GUO L J. Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate[J]. Journal of Vacuum Science &Technology B:Microelectronics and Nanometer Structures Processing,Measurement,and Phenomena, 2007, 25(6): 2388-2391.
    [131] PARK H J, KANG M G, AHN S H, et al. A Facile route to polymer solar cells with optimum morphology readily applicable to a roll-to-roll process without sacrificing high device performances[J]. Advanced Materials, 2010, 22(35): E247-E253. doi: 10.1002/adma.201000250
    [132] SHIN S, YANG M Y, GUO L J, et al. Roll-to-roll cohesive, coated, flexible, high-efficiency polymer light-emitting diodes utilizing ITO-free polymer anodes[J]. Small, 2013, 9(23): 4036-4044. doi: 10.1002/smll.201300382
    [133] SUBBARAMAN H, LIN X H, XU X CH, et al.. Metrology and instrumentation challenges with high-rate, roll-to-roll manufacturing of flexible electronic systems[C]. Proceedings of SPIE, Instrumentation, Metrology, and Standards for Nanomanufacturing, Optics, and Semiconductors VI, SPIE, 2012: 846603.
    [134] WANG L, MA L J, ZHAO Q L, et al. Internal nanocavity based high-resolution and stable structural colours fabricated by laser printing[J]. Optics Express, 2021, 29(5): 7428-7234. doi: 10.1364/OE.418103
    [135] GUAY J M, LESINA A C, CÔTÉ G, et al. Laser-induced plasmonic colours on metals[J]. Nature Communications, 2017, 8: 16095. doi: 10.1038/ncomms16095
    [136] LUK'YANCHUK B, ZHELUDEV N I, MAIER S A, et al. The Fano resonance in plasmonic nanostructures and metamaterials[J]. Nature Materials, 2010, 9(9): 707-715. doi: 10.1038/nmat2810
    [137] RAHMANI M, LUK'YANCHUK B, HONG M H, et al. Fano resonance in novel plasmonic nanostructures[J]. Laser &Photonics Reviews, 2013, 7(3): 329-349.
  • 加载中
图(20)
计量
  • 文章访问数:  4829
  • HTML全文浏览量:  1309
  • PDF下载量:  998
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-13
  • 修回日期:  2021-06-01
  • 网络出版日期:  2021-07-02
  • 刊出日期:  2021-07-01

目录

    /

    返回文章
    返回