留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Structural optimization and performance testing of gold microarray electrode fabricated by DMD lithography and electrodeposition

YANG Dong-fang LU Zi-feng LIU Hua SHAN Gui-ye

杨东方, 陆子凤, 刘华, 单桂晔. 数字微镜器件光刻和电沉积结合制备金微阵列电极的结构优化与性能检测[J]. 中国光学(中英文), 2022, 15(3): 592-607. doi: 10.37188/CO.2021-0109
引用本文: 杨东方, 陆子凤, 刘华, 单桂晔. 数字微镜器件光刻和电沉积结合制备金微阵列电极的结构优化与性能检测[J]. 中国光学(中英文), 2022, 15(3): 592-607. doi: 10.37188/CO.2021-0109
YANG Dong-fang, LU Zi-feng, LIU Hua, SHAN Gui-ye. Structural optimization and performance testing of gold microarray electrode fabricated by DMD lithography and electrodeposition[J]. Chinese Optics, 2022, 15(3): 592-607. doi: 10.37188/CO.2021-0109
Citation: YANG Dong-fang, LU Zi-feng, LIU Hua, SHAN Gui-ye. Structural optimization and performance testing of gold microarray electrode fabricated by DMD lithography and electrodeposition[J]. Chinese Optics, 2022, 15(3): 592-607. doi: 10.37188/CO.2021-0109

数字微镜器件光刻和电沉积结合制备金微阵列电极的结构优化与性能检测

详细信息
  • 中图分类号: O439

Structural optimization and performance testing of gold microarray electrode fabricated by DMD lithography and electrodeposition

doi: 10.37188/CO.2021-0109
Funds: Supported by National Natural Science Foundation of China (No. 61875036); Jilin Scientific and Technological Development Program (No. 20190302049GX).
More Information
    Author Bio:

    Yang Dongfang (1995—), female, born in Xinzhou, Shanxi, is now a master candidate in the School of Physics, Northeast Normal University, mainly engaged in the research of micro-nano processing, DMD lithography and other aspects. E-mail: 873717301@qq.com

    Zifeng Lu (1974—), female, born in Suibin Farm, Suibin County, Heilongjiang Province, ph. D., now is a teacher in the School of Physics, Northeast Normal University, mainly engaged in the research of micro-nano processing, 3D printing and other aspects. E-mail: luzf934@nenu.edu.cn

    Liu Hua (1976—), female, born in Fushun, Liaoning Province, Ph.D., now is a professor in the School of Physics, Northeast Normal University, mainly engaged in the research on 3D micro-nano printing of photosensitive materials and glass materials. E-mail: liuh146@nenu.edu.cn

    Corresponding author: liuh146@nenu.edu.cn
  • 摘要: 为提高微阵列电极 (Microarray electrodes, MAE) 的检测效率,降低生产成本,提出了一种将数字微镜器件 (DMD) 无掩模投影光刻与电化学沉积相结合的技术。首先,利用光刻系统压电平台 (PZS) 的高分辨率运动和DMD生成图案的灵活性等优点,制备了用户可自定义的微结构阵列,接着,通过电化学沉积获得Au导电层,实现了均匀的Au微阵列电极 (Au/MAE) 的制备。然后通过循环伏安法,比较了不同结构的Au/MAE的电化学性能,获得了优化的结构参数。最后,研究了优化后的Au/MAE对于不同浓度和pH值的葡萄糖的电流响应,并通过计时电流法对Au/MAE检测葡萄糖的抗干扰能力进行了测试。电化学分析表明,这种简单的Au/MAE对葡萄糖的电化学检测具有显著的安培响应和较强的抗干扰能力,其灵敏度为101 μA·cm−2·mM−1。这种微阵列电极的制备方法,具有分辨率高、一致性高、工艺简单、成本低的优点,为生物传感阵列的制造提供了切实可行的操作方案。

     

  • 图 1  (a) 基于DMD的无掩模投影光刻系统示意图;(b) 电化学沉积的实验装置图

    Figure 1.  (a) Schematic diagram of maskless projection lithography system based on DMD and (b) experimental setup of electrochemical deposition

    图 2  Au/MAE的制备流程图。 (a) 基片预处理;(b) 旋涂光刻胶和前烘;(c) 曝光并显影;(d) 电化学沉积Au纳米层;(e) 去除光刻胶

    Figure 2.  Flow chart of Au/MAE preparation process. (a) Substrate pretreatment; (b) photoresist spin-coating and pre drying; (c) exposure and development; (d) electrochemical deposition of Au nano layer; (e) photoresist removal

    图 3  周期性结构测试结果。圆形 ( (a) 和 (d) ) ;六边形 ( (b) 和 (e) ) 以及三角形 ( (c) 和 (f) ) 的MAE和Au/MAE在光学显微镜下的实际曝光和电沉积结果

    Figure 3.  Results of periodic structures. The actual exposure and electrodeposition results of MAE and Au/MAE structures of circular ((a) and (d)); hexagonal ((b) and (e))and triangular ((c) and (f)) under optical microscope

    图 4  非周期性结构结果。椭圆形((a)和(d));六边形((b)和(e))以及五角星((c)和(f))的MAE和Au/MAE在光学显微镜下的实际曝光和电沉积结果

    Figure 4.  Aperiodic structures results. The actual exposure and electrodeposition results of MAE and Au/MAE of elliptical ((a) and (d));hexagonal ((b) and (e)) and five-pointed ((c) and (f)) under optical microscope

    图 5  总表面积不变,单元表面积对氧化还原峰电流的影响,周期性排列的(a)圆形;(b)六边形;(c)三角形以及非周期性排列的(d)椭圆;(e)六边形;(f)五角星结构的Au/MAE的CV图

    Figure 5.  Effect of cell surface area on REDOX peak current under the same total surface area. CV diagrams of (a) circular; (b) hexagonal and (c) triangular Au/MAE structures with periodic arrangement and of (d) elliptical; (e) hexagonal and (f) five-pointed Au/MAE structures with aperiodic arrangement

    图 6  (a) 总表面积一定时,氧化峰电流值与电极单元表面积的关系;(b) 氧化峰电流值与电极的总表面

    Figure 6.  (a) Relationship between oxidation peak current and electrode cell surface area when total surface area is constant; (b) relationship between oxidation peak current and total electrode surface area

    图 7  (a) 密集排列的MAE的显微镜图像;(b) 电沉积后的Au/MAE的光学显微镜图;(c)全部曝光后的显微镜图像;(d)电沉积后的单个Au电极光学显微镜图

    Figure 7.  (a) Microscope image of the MAE with the most densely arranged cells; (b) microscope image of Au/MAE after electrodeposition; (c) microscope image obtained after full exposure; (d) microscope image of single Au electrode after electrodeposition

    图 8  Au电极(a)与Au/MAE电极(b)电化学性能比较

    Figure 8.  Comparison of electrochemical performance between Au electrode (a) and Au/MAE (b)

    图 9  Au/MAE在含有1 mM葡萄糖的0.1 mM PBS(pH 7.0)缓冲溶液中, (a)不同扫描速度下 (10−1000 mV/s) 的CV图以及(b)不同扫描速率下的阳极和阴极峰值电流拟合图

    Figure 9.  For Au/MAE (glucose concentration: 1 mM) in 0.1 mM PBS (pH 7.0) buffer solution, (a) CV diagram at different scanning rates (10−1000 mV/s); (b) fitting diagram of anodic and cathodic peak currents at different scanning rates

    图 10  0.1 mM PBS (pH 7.0) 条件下,(a) 葡萄糖浓度不同时Au/MAE的循环伏安图(扫描速率100 mV/s)及(b) 相应的校准曲线;(c) Au/MAE在0.5 V电压下,0.1 mM PBS中连续加入葡萄糖时的安培响应; (d) 对应的拟合曲线

    Figure 10.  (a) Cyclic voltammograms of Au/MAE electrode at different glucose concentrations in 0.1 mM PBS (pH 7.0) (scanning rate: 100 mV/s) and (b) the corresponding calibration curve; (c) amperometric response of Au/MAE electrode to the continuous addition of glucose to 0.1 mM PBS at the voltage of 0.5 V and (d) the corresponding fitting curve

    图 11  (a) 0.5 V电压下,在PBS(浓度0.1 mM,pH 7.0)缓冲溶液中连续添加1.5 mM葡萄糖、1 mM Urea、1 mM AA、1 mM乳糖、1 mM NaCl和6 mM葡萄糖时,电极的安培响应;(b) 与目标分析物相比,相应的干扰信号的百分比

    Figure 11.  (a) Amperometric response of the electrode to the continuous addition of 1.5 mM glucose, 1 mM urea, 1 mM AA, 1 mM lactose, 1 mM NaCl and 6 mM glucose to PBS (0.1 mM, pH 7.0) buffer solution at 0.5 V voltage; (b) the percentage of interfering signals compared with the target analyte

  • [1] ZHONG SH L, ZHUANG J Y, YANG D P, et al. Eggshell membrane-templated synthesis of 3D hierarchical porous Au networks for electrochemical nonenzymatic glucose sensor[J]. Biosensors and Bioelectronics, 2017, 96: 26-32. doi: 10.1016/j.bios.2017.04.038
    [2] KAYRAN Y U, JAMBREC D, SCHUHMANN W. Nanostructured DNA microarrays for dual SERS and electrochemical read-out[J]. Electroanalysis, 2019, 31(2): 267-272. doi: 10.1002/elan.201800579
    [3] PODESVA P, LIU X CH, PUMERA M, et al. Tailorable nanostructured mercury/gold amalgam electrode arrays with varied surface areas and compositions[J]. Sensors and Actuators B:Chemical, 2020, 302: 127175. doi: 10.1016/j.snb.2019.127175
    [4] TANG Y. In(NO3)3 induced tailoring of ZnO Nanorods' optical properties by electrodeposition[J]. Chinese Journal of Luminescence, 2020, 41(5): 571-578. (in Chinese) doi: 10.3788/fgxb20204105.0571
    [5] PIYA R, ZHU Y, SOERIYADI A H, et al. Micropatterning of porous silicon Bragg reflectors with poly (ethylene glycol) to fabricate cell microarrays: towards single cell sensing[J]. Biosensors and Bioelectronics, 2019, 127: 229-235. doi: 10.1016/j.bios.2018.12.001
    [6] CAI Y H, GAO X, WANG J H, et al. Output characteristics of Broad-area stripe semiconductor lasers with microthermal channel anode structure[J]. Chinese Journal of Luminescence, 2021, 42(4): 518-525. (in Chinese) doi: 10.37188/CJL.20200365
    [7] ZHAO W, ZHANG R L, XU SH, et al. Molecularly imprinted polymeric nanoparticles decorated with Au NPs for highly sensitive and selective glucose detection[J]. Biosensors and Bioelectronics, 2018, 100: 497-503. doi: 10.1016/j.bios.2017.09.020
    [8] WANG L Y, LIU K W, CHEN X, et al. Fabrication and characteristics of MgZnO ultraviolet detector based on Ag microporous array structure electrode[J]. Chinese Journal of Luminescence, 2021, 42(2): 201-207. (in Chinese) doi: 10.37188/CJL.20200362
    [9] MIR M, DONDAPATI S K, DUARTE M V, et al. Electrochemical biosensor microarray functionalized by means of biomolecule friendly photolithography[J]. Biosensors and Bioelectronics, 2010, 25(9): 2115-2121. doi: 10.1016/j.bios.2010.02.012
    [10] AN L, WANG G T, HAN Y, et al. Electrochemical biosensor for cancer cell detection based on a surface 3D micro-array[J]. Lab on a Chip, 2018, 18(2): 335-342. doi: 10.1039/C7LC01117B
    [11] TANG Y, ZHAO Y, ZHANG Z G, et al. Hydrothermal synthesis and properties of ZnO nanorod arrays[J]. Chinese Journal of Materials Research, 2015, 29(7): 529-534. (in Chinese) doi: 10.11901/1005.3093.2014.434
    [12] PALA K, SUBHAS C, KUNDUB C, VAMSI K, et al. Biosensing using photolithographically micropatterned electrodes ofPEDOT:PSS on ITO[J]. Sensors and Actuators B:Chemical, 2017, 242: 140-147. doi: 10.1016/j.snb.2016.11.049
    [13] XIAO X Z, LÜ C, WANG G, et al. Flexible triboelectric nanogenerator from micro-nano structured polydimethylsiloxane[J]. Chemical Research in Chinese Universities, 2015, 31(3): 434-438. doi: 10.1007/s40242-015-4432-8
    [14] RAYMUNDO-PEREIRA P A, SHIMIZU F M, COELHO D, et al. A nanostructured bifunctional platform for sensing of glucose biomarker in artificial saliva: synergy in hybrid Pt/Au surfaces[J]. Biosensors and Bioelectronics, 2016, 86: 369-376. doi: 10.1016/j.bios.2016.06.053
    [15] VERMA A K, DAS R, SONI R K. Laser fabrication of periodic arrays of microsquares on silicon for SERS application[J]. Applied Surface Science, 2018, 427: 133-140. doi: 10.1016/j.apsusc.2017.08.143
    [16] CHEN R H, LIU H, ZHANG H L, et al. Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique[J]. Optics Express, 2017, 25(18): 21958-21968. doi: 10.1364/OE.25.021958
    [17] XIONG ZH, LIU H, CHEN R H, et al. Illumination uniformity improvement in digital micromirror device based scanning photolithography system[J]. Optics Express, 2018, 26(14): 18597-18607. doi: 10.1364/OE.26.018597
    [18] LI Q K, XIAO Y, LIU H, et al. Analysis and correction of the distortion error in a DMD based scanning lithography system[J]. Optics Communications, 2019, 434: 1-6. doi: 10.1016/j.optcom.2018.10.042
    [19] ZHANG Y, LUO J, XIONG ZH, et al. User-defined microstructures array fabricated by DMD based multistep lithography with dose modulation[J]. Optics Express, 2019, 27(22): 31956-31966. doi: 10.1364/OE.27.031956
    [20] QIU C C, WANG X, LIU X Y, et al. Direct electrochemistry of glucose oxidase immobilized on nanostructured gold thin films and its application to bioelectrochemical glucose sensor[J]. Electrochimica Acta, 2012, 67: 140-146. doi: 10.1016/j.electacta.2012.02.011
  • 加载中
图(11)
计量
  • 文章访问数:  923
  • HTML全文浏览量:  542
  • PDF下载量:  170
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-05-14
  • 修回日期:  2021-06-02
  • 网络出版日期:  2021-10-16
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回