-
摘要: 针对640×512长波红外制冷型探测器,设计了一种制冷型长波红外光学系统,用于对目标的红外跟踪探测。该光学系统采用二次成像结构以达到100%冷光阑效率,采用锗和硫化锌玻璃材料相结合,实现了像差校正和消色差设计,通过引入高次非球面,很好地校正了系统的高级像差,简化了系统结构。光学系统由6个镜片构成,焦距为400 mm,工作波段为7.7~9.3 μm,视场角为1.37°×1.10°,F数为2。设计结果表明:在空间频率33 lp/mm处,轴外视场MTF>0.24,接近衍射极限,具有较高的成像品质。在−35~+55 ℃工作温度范围内,通过内置调焦镜调焦来保证高温、低温环境下的成像质量,可用于宽温度范围内的红外跟踪探测。Abstract: Aiming at 640×512 long-wavelength infrared cooled detectors, a cooled long-wavelength infrared optical system was designed to track and detect an infrared target. The optical system adopts the secondary imaging structure to ensure 100% cold-shielding efficiency, and adopts a combination of optical material Ge and ZnS to achieve aberration correction and achromatic design. By introducing the high-order aspheric surface, the high aberration of the system is well-corrected, thus the system structure is simplified. The optical system is composed of 6 lenses. The focal length is 400 mm, the working bands are 7.7~9.3 μm, the field of view is 1.37°×1.10°, and the F-number is 2. The design results show that at a spatial frequency of 33 lp/mm, the MTF of off-axis field of view is more than 0.24, which approaches the diffraction limit and has high imaging quality. In the operating temperature range of −35~+55 ℃, the focusing lens is used to ensure the imaging quality under high and low temperature environments, which can be used for infrared tracking detection over a wide range of temperatures.
-
Key words:
- cooled /
- the secondary imaging /
- high order aspheric surface /
- focusing lens
-
表 1 该红外系统的光学设计参数
Table 1. Design parameters of proposed infrared optical system
项目 参数 波段范围/μm 7.7~9.3 中心波段/μm 8.5 焦距/mm 400 F数 2 视场角(°) 1.37×1.10 靶面大小/mm 12.29 温度范围/℃ −35~+55 像元大小 15 μm×15 μm 表 2 冷反射分析结果
Table 2. Analysis results of the narcissus effect
反射面 光瞳切趾 YNI I/IBAR 冷像立体角 冷像强度比 1 7(R) 32.3971 −21.550 0.012372 0.00072 2 7(R) −14.1678 −4.933 0.028289 0.00377 3 7(R) 8.9698 7.885 0.044679 0.00942 4 7(R) 2.3184 1.592 0.172476 0.13999 5 7(R) −9.9085 −6.533 0.040447 0.00772 6 7(R) −1.0371 −0.676 0.381728 0.67911 8 20(R) 1.5979 −10.228 0.423244 0.83253 9 20(R) −1.6151 −0.509 0.166312 0.13018 10 20(R) −3.5843 −0.801 0.108109 0.05508 11 20(R) −2.6479 −0.762 0.147997 0.10314 12 20(R) 1.1223 1.353 0.505261 1.17892 13 20(R) −2.7761 −0.861 0.163054 0.12515 -
[1] 汤天瑾, 李岩. 红外相机共孔径双波段成像光学系统[J]. 应用光学,2015,36(4):513-518. doi: 10.5768/JAO201536.0401004TANG T J, LI Y. Dual-band common aperture optical system for infrared camera[J]. Journal of Applied Optics, 2015, 36(4): 513-518. (in Chinese) doi: 10.5768/JAO201536.0401004 [2] 陈建发, 潘枝峰, 王合龙, 等. 基于制冷型探测器的双波段红外光学系统无热化设计[J]. 电光与控制,2019,26(10):83-86. doi: 10.3969/j.issn.1671-637X.2019.10.017CHEN J F, PAN ZH F, WANG H L, et al. Athermalization design of a dual-band infrared optical system with cryogenic detector[J]. Electronics Optics &Control, 2019, 26(10): 83-86. (in Chinese) doi: 10.3969/j.issn.1671-637X.2019.10.017 [3] 刘星洋, 翟尚礼, 李靖, 等. 制冷型中波红外偏振成像光学系统设计[J]. 红外与激光工程,2021,50(2):20200208. doi: 10.3788/IRLA20200208LIU X Y, ZHAI SH L, LI J, et al. Design of cooled medium-wave infrared polarization imaging optical system[J]. Infrared and Laser Engineering, 2021, 50(2): 20200208. (in Chinese) doi: 10.3788/IRLA20200208 [4] 李昂, 王永刚, 邬志强, 等. 光学加工过程中高次非球面的三坐标测量数据处理[J]. 中国光学,2020,13(2):302-312. doi: 10.3788/co.20201302.0302LI A, WANG Y G, WU ZH Q, et al. Data processing of high-order aspheric surface measurements using CMM in optical fabrication[J]. Chinese Optics, 2020, 13(2): 302-312. (in Chinese) doi: 10.3788/co.20201302.0302 [5] 付强, 张新. 基于硫系玻璃的中波红外光学系统无热化设计[J]. 红外与激光工程,2015,44(5):1467-1471. doi: 10.3969/j.issn.1007-2276.2015.05.013FU Q, ZHANG X. Athermalization of the medium-wave infrared optical system based on chalcogenide glasses[J]. Infrared and Laser Engineering, 2015, 44(5): 1467-1471. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.05.013 [6] 吴文达, 张葆, 洪永丰, 等. 机载红外与合成孔径雷达共孔径天线设计[J]. 中国光学,2020,13(3):595-604.WU W D, ZHANG B, HONG Y F, et al. Design of co-aperture antenna for airborne infrared and synthetic aperture radar[J]. Chinese Optics, 2020, 13(3): 595-604. (in Chinese) [7] 吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036LV B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036 [8] 潘君骅. 光学非球面的设计、加工与检验[M]. 苏州: 苏州大学出版社, 2004.PAN J H. The Design, Manufacture and Test of the Aspherical Optical Surfaces[M]. Suzhou: Suzhou University Press, 2004. (in Chinese) [9] 孟超, 郭俊, 付芸. 利用非球面简化红外连续变焦光学系统的研究[J]. 红外,2010,31(4):6-11. doi: 10.3969/j.issn.1672-8785.2010.04.002MENG CH, GUO J, FU Y. Design of far-infrared zoom optical system based on aspheric surface[J]. Infrared, 2010, 31(4): 6-11. (in Chinese) doi: 10.3969/j.issn.1672-8785.2010.04.002 [10] 杨乐, 孙强, 王健, 等. 长波红外连续变焦光学系统设计[J]. 红外与激光工程,2012,41(4):999-1004. doi: 10.3969/j.issn.1007-2276.2012.04.031YANG L, SUN Q, WANG J, et al. Design of long-wave infrared continuous zoom optical system[J]. Infrared and Laser Engineering, 2012, 41(4): 999-1004. (in Chinese) doi: 10.3969/j.issn.1007-2276.2012.04.031 [11] 朱广亮, 杨林, 刘灿. 制冷型中波红外光学系统无热化设计[J]. 光学与光电技术,2021,19(2):98-102.ZHU G L, YANG L, LIU C. Athermalized design of refrigerated medium-wave infrared short-focus optical system[J]. Optics &Optoelectronic Technology, 2021, 19(2): 98-102. (in Chinese) [12] HOWARD J W, ABEL I R. Narcissus: reflections on retroreflections in thermal imaging systems[J]. Applied Optics, 1982, 21(18): 3393-3397. doi: 10.1364/AO.21.003393 [13] AKRAM M N. Design of a multiple-field-of-view optical system for 3- to 5-μm infrared focal-plane arrays[J]. Optical Engineering, 2003, 42(6): 1704-1714. doi: 10.1117/1.1572892