-
摘要: 近1 μm波段的可调谐光纤光源在光纤传感、激光冷却、光化学、光谱学以及医疗等领域具有广泛应用,近年来成为光纤光源领域的一个研究热点。本文首先系统回顾了能够实现波长调谐的4类光纤光源的发展历程,然后分析了它们存在的问题及可能的解决思路,最后对近1 μm波段可调谐光纤光源进行了总结和展望。Abstract: Tunable fiber light sources with wavelength near 1 μm are widely used in optical fiber sensing, laser cooling, photochemical, spectroscopy and medical fields. They have thus become an area of focus in fiber light source research in recent years. The development history of fiber light sources with wavelength tuning ability is firstly summarized systematically. Then, their problems and possible solutions are analyzed. Finally, the future developments of tunable fiber light sources near 1 μm are prospected.
-
表 1 可调谐掺镱光纤激光器的研究进展
Table 1. Research progress of tunable ytterbium-doped fiber lasers
年份 研究单位 系统结构 调谐范围/nm 最大功率 线宽 2001 法国鲁昂大学 基于TBPF的全光纤结构环形腔 1040~1100 800 mW ~0.1 nm 2002 德国汉诺威激光中心 基于HDG的空间结构环形腔 1032~1124 10 W <2.5 GHz 2004 南开大学 基于可调FBG的线形腔 1046.6~1062.2 117 mW <0.1 nm 2005 中国科学技术大学 DBR激光器 1036.1~1056.5 4 mW <8 MHz 2005 墨西哥光学研究中心 基于多模干涉效应的线形腔 1088~1097 500 mW 0.5 nm 2007 德国汉诺威激光中心 基于Littman-Littrow结构的环形腔 1017~1043 31 mW 5 MHz 2007 南开大学 基于闪耀光栅的线形腔 1042.1~1093 2.21 W <0.08 nm 2007 瑞典皇家理工学院 基于体布拉格光栅的线形腔 1022~1055 4.3 W 5 GHz 2007 德国汉诺威激光中心 线形腔、MOPA结构 1040~1085 133 W —— 2008 厦门大学 基于Littman-Littrow结构的线形腔 1046~1121 >20 W 0.5 nm 2011 清华大学 被动多环形腔结构 1020~1080 100 mW 单纵模 2011 英国布里斯托大学 基于AOTF的空间结构环形腔 1035~1105 10 W —— 2013 法国波尔多大学 基于AOTF的空间结构环形腔 976~1120 41 W 0.1~1 nm 2013 瑞典皇家理工学院 基于布拉格光栅的线形腔 1064~1073 >100 W 13 GHz 2014 中科院上光所 基于TBPF的全光纤环形腔 1010~1090 39.9 W —— 2016 美国IPG公司 MOPA结构 1030~1070 >1.5 kW —— 2017 国防科技大学 MOPA结构 1065~1090 >1 kW 0.12 nm 2019 西北大学 复合腔结构 1030~1090 18.5 mW 8.7 kHz 2019 印度科学研究所 环形腔、MOPA结构 1050~1100 130 W 0.4~1 nm 2020 清华大学 环形腔、MOPA结构、同带泵浦 1060~1090 >1 kW 0.1 nm 表 2 可调谐拉曼光纤激光器的研究进展
Table 2. Research progress of tunable Raman fiber lasers
年份 研究单位 系统结构 调谐范围/nm 最大功率 1977 美国贝尔实验室 基于衍射光栅的TRFL 一阶1085~1130
二阶1150~1175—— 2005 德国汉堡-哈尔堡工业大学 Sagnac-loop结构的全光纤级联TRFL 1110~1230 700 mW 2007 俄罗斯科学院 基于可调谐泵浦源、可调谐FBG的TRFL 1250~1300 3.2 W 2008 加拿大拉瓦尔大学 基于可调谐FBG的TRFL 1075~1135 5 W 2010 法国里尔大学 基于可调谐泵浦源的TRFL 1240~1289 2.5 W 2012 德国弗劳恩霍夫应用光学与精密研究所 MOPA结构的TRFL 1118~1130 208 W 2018 国防科技大学 基于可调谐泵浦源的TRFL 1112~1139.6 125.3 W 表 3 可调谐随机光纤激光器的研究进展
Table 3. Research progress of tunable random fiber lasers
年份 研究单位 系统结构 调谐范围/nm 最大功率 2015 国防科技大学 基于手动调节的TBPF的可调谐RFL 1040~1090 —— 2016 上海光学精密机械研究所 基于可调谐泵浦源与高阶拉曼激射的可调谐RFL 1070~1370 1.8 W 2017 上海光学精密机械研究所 基于可调谐泵浦源与高阶拉曼激射的可调谐RFL 1000~1940 —— 2018 国防科技大学 基于TBPF的可调谐RFL 1095~1115 23 W 2018 国防科技大学 基于可调谐泵浦源与半开腔结构的可调谐RFL 1113.76~1137.44 >100 W 2019 印度科学研究所 基于可变截止短通滤波反馈结构的可调谐RFL 1118~1575 33 W 表 4 可调谐超荧光光纤光源的研究进展
Table 4. Research progress of tunable superfluorescent fiber sources
年份 研究单位 系统结构 调谐范围/nm 最大功率 2009 英国南安普顿大学 基于衍射光栅的空间结构可调谐SFS 1034~1084 135 mW 2018 西安光学精密机械研究所 基于TBPF的可调谐SFS 1045~1080 30 W 2020 西安光学精密机械研究所 基于衍射光栅的空间结构可调谐SFS 1052.4~1072.8 >230 W 2020 西安光学精密机械研究所 基于衍射光栅的空间结构可调谐SFS 1035~1055 >300 W 2020 西安光学精密机械研究所 基于TBPF的可调谐SFS 1045~1085 ~1000 W -
[1] NILSSON J, CLARKSON W A, SELVAS R, et al. High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers[J]. Optical Fiber Technology, 2004, 10(1): 5-30. doi: 10.1016/j.yofte.2003.07.001 [2] KOESTER C J, SNITZER E. Amplification in a fiber laser[J]. Applied Optics, 1964, 3(10): 1182-1186. doi: 10.1364/AO.3.001182 [3] JAUREGUI C, LIMPERT J, TÜNNERMANN A. High-power fibre lasers[J]. Nature Photonics, 2013, 7(11): 861-867. doi: 10.1038/nphoton.2013.273 [4] 党文佳, 李哲, 李玉婷, 等. 高功率连续波掺镱光纤激光器研究进展[J]. 中国光学,2020,13(4):676-694. doi: 10.37188/CO.2019-0208DANG W J, LI ZH, LI Y T, et al. Recent advances in high-power continuous-wave ytterbium-doped fiber lasers[J]. Chinese Optics, 2020, 13(4): 676-694. (in Chinese) doi: 10.37188/CO.2019-0208 [5] ZERVAS M N. High power ytterbium-doped fiber lasers—fundamentals and applications[J]. International Journal of Modern Physics B, 2014, 28(12): 1442009. doi: 10.1142/S0217979214420090 [6] TER-MIKIRTYCHEV V. Fundamentals of Fiber Lasers and Fiber Amplifiers[M]. New York: Springer, 2014. [7] 韩辉云. 可调谐掺镱光纤激光器理论和实验研究[D]. 石家庄: 河北师范大学, 2019HAN H Y. Theoretical and experimental study on tunable ytterbium-doped fiber laser[D]. Shijiazhuang: Hebei Normal University, 2019. (in Chinese) [8] HIDEUR A, CHARTIER T, Ö ZKUL C, et al. All-fiber tunable ytterbium-doped double-clad fiber ring laser[J]. Optics Letters, 2001, 26(14): 1054-1056. doi: 10.1364/OL.26.001054 [9] AUERBACH M, ADEL P, WANDT D, et al. 10 W widely tunable narrow linewidth double-clad fiber ring laser[J]. Optics Express, 2002, 10(2): 139-144. doi: 10.1364/OE.10.000139 [10] SILVA A, BOLLER K J, LINDSAY I D. Wavelength-swept Yb-fiber master-oscillator-power-amplifier with 70 nm rapid tuning range[J]. Optics Express, 2011, 19(11): 10511-10517. doi: 10.1364/OE.19.010511 [11] ROYON R, LHERMITE J, SARGER L, et al. High power, continuous-wave ytterbium-doped fiber laser tunable from 976 to 1120 nm[J]. Optics Express, 2013, 21(11): 13818-13823. doi: 10.1364/OE.21.013818 [12] HU J M, ZHANG L, FENG Y. Widely tunable Yb-doped all-fiber laser from 1.0 to 1.1 μm[C]. Advanced Solid State Lasers 2014, Optical Society of America, 2014: AM5A.22. [13] BALASWAMY V, APARANJI S, CHAYRAN G, et al. High-power, independently wavelength, power, and linewidth tunable ytterbium fiber laser[J]. IEEE Photonics Technology Letters, 2019, 31(8): 583-586. doi: 10.1109/LPT.2019.2901504 [14] TIAN J D, XIAO Q R, LI D, et al. Tandem-pumped high-power narrow-linewidth fiber laser tunable from 1060–1090 nm[J]. Journal of Lightwave Technology, 2020, 38(6): 1461-1467. doi: 10.1109/JLT.2019.2954536 [15] FU SH G, FAN W D, ZHANG Q, et al. Tunable Yb-doped double-clad fibre laser based on fibre Bragg grating with narrow linewidth[J]. Chinese Physics Letters, 2004, 21(7): 1279-1281. doi: 10.1088/0256-307X/21/7/026 [16] SELVAS R, TORRES-GOMEZ I, MARTINEZ-RIOS A, et al. Wavelength tuning of fiber lasers using multimode interference effects[J]. Optics Express, 2005, 13(23): 9439-9445. doi: 10.1364/OPEX.13.009439 [17] 刘胜利, 李乙钢, 高艳丽, 等. 高功率宽调谐范围掺Yb3+光子晶体光纤激光器 [J]. 光学学报,2007,27(9):1663-1667. doi: 10.3321/j.issn:0253-2239.2007.09.024LIU SH L, LI Y G, GAO Y L, et al. High-power widely tunable Yb-doped photonic crystal fiber laser[J]. Acta Optica Sinica, 2007, 27(9): 1663-1667. (in Chinese) doi: 10.3321/j.issn:0253-2239.2007.09.024 [18] HILDEBRANDT M, FREDE M, KRACHT D. Narrow-linewidth ytterbium-doped fiber amplifier system with 45 nm tuning range and 133 W of output power[J]. Optics Letters, 2007, 32(16): 2345-2347. doi: 10.1364/OL.32.002345 [19] JELGER P, LAURELL F. Efficient skew-angle cladding-pumped tunable narrow-linewidth Yb-doped fiber laser[J]. Optics Letters, 2007, 32(24): 3501-3503. doi: 10.1364/OL.32.003501 [20] ZEIL P, PASISKEVICIUS V, LAURELL F. Efficient spectral control and tuning of a high-power narrow-linewidth Yb-doped fiber laser using a transversely chirped volume Bragg grating[J]. Optics Express, 2013, 21(4): 4027-4035. doi: 10.1364/OE.21.004027 [21] FAN Y Y, YE CH CH, WU C Y, et al. High-power narrow-linewidth wavelength-tunable Yb3+-doped double-clad fiber lasers[J]. Proceedings of SPIE, 2008, 7134: 71342H. doi: 10.1117/12.803303 [22] YAGODKIN R, PLATONOV N, YUSIM A, et al. > 1.5kW narrow linewidth CW diffraction-limited fiber amplifier with 40nm bandwidth[J]. Proceedings of SPIE, 2016, 9728: 972807. [23] LIU Y K, SU R T, MA P F, et al. > 1 kW all-fiberized narrow-linewidth polarization-maintained fiber amplifiers with wavelength spanning from 1065 to 1090 nm[J]. Applied Optics, 2017, 56(14): 4213-4218. doi: 10.1364/AO.56.004213 [24] 王安廷, 李锋, 黄晶, 等. 可调谐单频掺镱光纤DBR激光器[J]. 量子电子学报,2005,22(4):607-611. doi: 10.3969/j.issn.1007-5461.2005.04.024WANG A T, LI F, HUANG J, et al. Tunable single-frequency ytterbium-doped fiber BDR laser[J]. Chinese Journal of Quantum Electronics, 2005, 22(4): 607-611. (in Chinese) doi: 10.3969/j.issn.1007-5461.2005.04.024 [25] ENGELBRECHT M, RUEHL A, WANDT D, et al. Single-frequency ytterbium-doped fiber laser with 26 nm tuning range[J]. Optics Express, 2007, 15(8): 4617-4622. doi: 10.1364/OE.15.004617 [26] YIN F F, YANG S G, CHEN H W, et al. 60-nm-wide tunable single-longitudinal-mode ytterbium fiber laser with passive multiple-ring cavity[J]. IEEE Photonics Technology Letters, 2011, 23(22): 1658-1660. doi: 10.1109/LPT.2011.2166112 [27] WANG K L, LU B L, QI X Y, et al. Wavelength-tunable single-frequency ytterbium-doped fiber laser based on a double-circulator interferometer[J]. Laser Physics Letters, 2019, 16(1): 015104. doi: 10.1088/1612-202X/aaf175 [28] 马选选, 陆宝乐, 王凯乐, 等. 宽带可调谐单频窄线宽光纤激光器[J]. 光学学报,2019,39(1):0114001. doi: 10.3788/AOS201939.0114001MA X X, LU B L, WANG K L, et al. Tunable broadband single-frequency narrow-linewidth fiber laser[J]. Acta Optica Sinica, 2019, 39(1): 0114001. (in Chinese) doi: 10.3788/AOS201939.0114001 [29] 冯衍, 姜华卫, 张磊. 高功率拉曼光纤激光器技术研究进展[J]. 中国激光,2017,44(2):0201005. doi: 10.3788/CJL201744.0201005FENG Y, JIANG H W, ZHANG L. Advances in high power Raman fiber laser technology[J]. Chinese Journal of Lasers, 2017, 44(2): 0201005. (in Chinese) doi: 10.3788/CJL201744.0201005 [30] LIN C, STOLEN R H, FRENCH W G, et al. A cw tunable near-infrared (1.085–1.175μm) Raman oscillator[J]. Optics Letters, 1977, 1(3): 96-97. doi: 10.1364/OL.1.000096 [31] CIERULLIES S, LIM E L, BRINKMEYER E. Ad-fiber widely tunable Raman laser in a combined linear and sagnac-loop configuration[C]. OFC/NFOEC Technical Digest. Optical Fiber Communication Conference, 2005, IEEE, 2005: 31-33. [32] BABIN S A, KABLUKOV S I, VLASOV A A. Tunable fiber Bragg gratings for application in tunable fiber lasers[J]. Laser Physics, 2007, 17(11): 1323-1326. doi: 10.1134/S1054660X07110096 [33] BELANGER E, BERNIER M, FAUCHER D, et al. High-power and widely tunable all-fiber Raman laser[J]. Journal of Lightwave Technology, 2008, 26(12): 1696-1701. doi: 10.1109/JLT.2008.922337 [34] ANQUEZ F, COURTADE E, SIVÉRY A, et al. A high-power tunable Raman fiber ring laser for the investigation of singlet oxygen production from direct laser excitation around 1270 nm[J]. Optics Express, 2010, 18(22): 22928-22936. doi: 10.1364/OE.18.022928 [35] REKAS M, SCHMIDT O, ZIMER H, et al. Over 200 W average power tunable Raman amplifier based on fused silica step index fiber[J]. Applied Physics B, 2012, 107(3): 711-716. doi: 10.1007/s00340-012-5052-3 [36] AGRAWAL G P. Nonlinear fiber optics: its history and recent progress [Invited][J]. Journal of the Optical Society of America B, 2011, 28(12): A1-A10. doi: 10.1364/JOSAB.28.0000A1 [37] SONG J X, WU H SH, XU J M, et al. High-power linearly-polarized tunable Raman fiber laser[J]. Chinese Physics B, 2018, 27(9): 094209. doi: 10.1088/1674-1056/27/9/094209 [38] TURITSYN S K, BABIN S A, CHURKIN D V, et al. Random distributed feedback fibre lasers[J]. Physics Reports, 2014, 542(2): 133-193. doi: 10.1016/j.physrep.2014.02.011 [39] 党文佳, 李哲, 卢娜, 等. 0.9~1.0 μm近红外连续光纤激光器的研究进展[J]. 中国光学,2021,14(2):264-274. doi: 10.37188/CO.2020-0193DANG W J, LI ZH, LU N, et al. Research progress of 0.9~1.0 μm near-infrared continuous-wave fiber lasers[J]. Chinese Optics, 2021, 14(2): 264-274. (in Chinese) doi: 10.37188/CO.2020-0193 [40] DU X Y, ZHANG H W, WANG X L, et al. Tunable random distributed feedback fiber laser operating at 1 μm[J]. Applied Optics, 2015, 54(4): 908-911. doi: 10.1364/AO.54.000908 [41] YE J, XU J M, SONG J X, et al. Flexible spectral manipulation property of a high power linearly polarized random fiber laser[J]. Scientific Reports, 2018, 8(1): 2173. doi: 10.1038/s41598-018-20664-y [42] WU H SH, SONG J X, YE J, et al. Hundred-watt-level linearly polarized tunable Raman random fiber laser[J]. Chinese Optics Letters, 2018, 16(6): 061402. doi: 10.3788/COL201816.061402 [43] ZHANG L, JIANG H W, YANG X Z, et al. Ultra-wide wavelength tuning of a cascaded Raman random fiber laser[J]. Optics Letters, 2016, 41(2): 215-218. doi: 10.1364/OL.41.000215 [44] ZHANG L, JIANG H W, YANG X Z, et al. Nearly-octave wavelength tuning of a continuous wave fiber laser[J]. Scientific Reports, 2017, 7: 42611. doi: 10.1038/srep42611 [45] ZHANG L, DONG J Y, FENG Y. High-power and high-order random Raman fiber lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24(3): 1400106. [46] BALASWAMY V, APARANJI S, ARUN S, et al.. High power, ultra-widely tunable wavelength, cascaded Raman fiber laser[C]. CLEO: Science and Innovations 2018, Optical Society of America, 2018: SM1K.4. [47] BALASWAMY V, RAMACHANDRAN S, SUPRADEEPA V R. High-power, cascaded random Raman fiber laser with near complete conversion over wide wavelength and power tuning[J]. Optics Express, 2019, 27(7): 9725-9732. doi: 10.1364/OE.27.009725 [48] 李乙钢, 刘伟伟, 傅成鹏, 等. 大功率掺Yb双包层光纤宽带超荧光光源[J]. 光学学报,2001,21(10):1171-1173. doi: 10.3321/j.issn:0253-2239.2001.10.005LI Y G, LIU W W, FU CH P, et al. High-power Yb-doped double-cladding fiber broadband superfluorescent source[J]. Acta Optica Sinica, 2001, 21(10): 1171-1173. (in Chinese) doi: 10.3321/j.issn:0253-2239.2001.10.005 [49] WANG P, CLARKSON W A. Tunable Yb-doped fibre amplified spontaneous emission source[C]. Conference on Lasers and Electro-Optics 2009, Optical Society of America, 2009: CFM6. [50] YE J, XU J M, ZHANG Y, et al. Spectrum-manipulable hundred-watt-level high-power superfluorescent fiber source[J]. Journal of Lightwave Technology, 2019, 37(13): 3113-3118. doi: 10.1109/JLT.2019.2911007 [51] 吴鹏. 高功率掺镱光纤超荧光光源技术研究[D]. 西安: 中国科学院大学(中国科学院西安光学精密机械研究所), 2019WU P. Study on the technology of high-power Yb-doped superfluorescent fiber source[D]. Xi’an: University of Chinese Academy of Sciences (Xi’an Institute of Optics & Precision Mechanics, Chinese Academy of Sciences), 2019. (in Chinese) [52] WU P, ZHAO B Y, ZHAO W, et al. Optimization investigation for high-power 1034 nm all-fiber narrowband Yb-doped superfluorescent source[J]. Optics Communications, 2019, 445: 187-192. doi: 10.1016/j.optcom.2019.04.033 [53] WU P, ZHAO B Y, ZHAO W, et al. 30 W all-fiber tunable, narrowband Yb-doped superfluorescent fiber source[J]. Infrared Physics &Technology, 2018, 92: 363-366. [54] GAO W, FAN W H, ZHANG Y P, et al. High-power tunable sub-nm narrowband near-diffraction-limited superfluorescent fiber source based on a single-lens spectral filter[J]. Optics Communications, 2020, 463: 125359. doi: 10.1016/j.optcom.2020.125359 [55] JU P, FAN W H, ZHAO B Y, et al. High power, tunable, ultra-narrowband Yb-doped superfluorescent fiber source operating at wavelength less than 1055 nm with 20 nm tuning range[J]. Infrared Physics &Technology, 2020, 111: 103530. [56] LI ZH, LI G, GAO Q, et al. Kilowatt-level tunable all-fiber narrowband superfluorescent fiber source with 40 nm tuning range[J]. Optics Express, 2020, 28(7): 10378-10385. doi: 10.1364/OE.387405 [57] ZHENG Y, YANG Y F, WANG J H, et al. 10.8 kW spectral beam combination of eight all-fiber superfluorescent sources and their dispersion compensation[J]. Optics Express, 2016, 24(11): 12063-12071. doi: 10.1364/OE.24.012063