-
摘要: 紫外探测技术已广泛应用于人类生产生活的各个方面,宽谱段紫外成像仪系统的研究具有重要意义。本文通过推导色差理论公式,提出了单一透镜材料的宽谱段紫外成像仪光学系统色差校正方案。结合高灵敏度大动态紫外成像探测器的性能指标要求,设计了仅一种透镜材料且所有透镜均为球面的210~400 nm宽谱段紫外成像仪光学系统,并运用光学设计软件CODE V进行系统优化及像质评价。结果表明:在奈奎斯特频率40 lp/mm下,全视场全波段系统的调制传递函数优于0.6,系统点列图RMS<7.8 μm,具有良好的成像质量。该系统不含非球面等光学元件,不仅易于加工装调,而且降低了研制成本,该方法将为宽谱段紫外成像光谱仪的设计奠定技术基础。Abstract: Ultraviolet detection technology is widely used in various fields of production and human life. It is thus greatly significant to study wide-spectrum ultraviolet (UV) imager systems. Through deducing the theoretical formula of chromatic aberration, a scheme for correcting the chromatic aberration of the optical system of the wide-spectrum UV imager with the lenses made of single material was proposed. Combined with the performance index of a high-sensitivity dynamic UV imaging detector, the optical system of the 210~400 nm wide-spectrum UV imager with only one lens material and all lenses being spherical was designed. The optical design software CODE V was used to optimize the system and evaluate the image quality. The results demonstrate that the Modulation Transfer Function (MTF) in the entire field of view and waveband of the system is better than 0.6 at the Nyquist frequency of 40 lp/mm and RMS<7.8 μm. Thus, the system has good imaging quality. The system does not contain aspheric optical elements, which makes it not only easy to process and assemble, but also reduces its cost and lays a technical foundation for the development of a wide-spectrum UV imaging spectrometer.
-
Key words:
- ultraviolet imager /
- wide spectrum /
- optical design /
- chromatic correction
-
表 1 宽谱段紫外成像仪系统参数
Table 1. Parameters of wide-spectrum UV imaging system
项目 参数 轨道高度/km 760 空间分辨率/m 30 系统入瞳直径/mm 50 系统焦距/mm 330 系统F数 F/6.6 视场角/(°) 2.2 光谱范围/nm 210~400 像素/pixel 1024×1024 像元尺寸/μm 13 -
[1] XUE Q SH, YANG B, TIAN ZH T, et al. Spaceborne limb hyperspectral imager for ozone profile detection[J]. Optics Express, 2019, 27(22): 31348-31361. doi: 10.1364/OE.27.031348 [2] WANG X H, XUE Q SH. Optical system design of an atmospheric detector with nadir view and omnidirectional limb view[J]. Applied Optics, 2017, 56(26): 7454-7461. doi: 10.1364/AO.56.007454 [3] 崔穆涵, 田志辉, 周跃, 等. 大相对孔径紫外成像仪光学系统设计[J]. 中国光学,2018,11(2):212-218. doi: 10.3788/co.20181102.0212CUI M H, TIAN ZH H, ZHOU Y, et al. Design of large aperture ultraviolet optical system for ultraviolet camera[J]. Chinese Optics, 2018, 11(2): 212-218. (in Chinese) doi: 10.3788/co.20181102.0212 [4] 丛海芳, 王春晖, 王宇. 宽波段高分辨率小型紫外成像光谱仪光学系统研究[J]. 光谱学与光谱分析,2013,33(2):562-566. doi: 10.3964/j.issn.1000-0593(2013)02-0562-05CONG H F, WANG CH H, WANG Y. Study on an optical system of small ultraviolet imaging spectrometer with high resolution in broadband[J]. Spectroscopy and Spectral Analysis, 2013, 33(2): 562-566. (in Chinese) doi: 10.3964/j.issn.1000-0593(2013)02-0562-05 [5] 薛庆生, 王淑荣. 用于大气临边探测的紫外全景成像仪光学设计[J]. 光学学报,2013,33(4):0422001. doi: 10.3788/AOS201333.0422001XUE Q SH, WANG SH R. Optical design of UV panoramic imager for atmospheric sounding in limb view[J]. Acta Optica Sinica, 2013, 33(4): 0422001. (in Chinese) doi: 10.3788/AOS201333.0422001 [6] 于磊, 林冠宇, 于向阳. 空间高层大气遥感远紫外成像光谱仪的光学系统[J]. 光学学报,2013,33(1):0122001. doi: 10.3788/AOS201333.0122001YU L, LIN G Y, YU X Y. Optical system of far ultraviolet imaging spectrometer for space-based upper atmosphere remote sensing[J]. Acta Optica Sinica, 2013, 33(1): 0122001. (in Chinese) doi: 10.3788/AOS201333.0122001 [7] 张宗存, 丁学专, 杨波, 等. 轻小型宽谱段紫外高光谱成像仪光学系统设计[J]. 红外技术,2017,39(4):304-308. doi: 10.11846/j.issn.1001_8891.201704003ZHANG Z C, DING X ZH, YANG B, et al. Optical system design for compact wide spectrum of ultraviolet hyper-spectral imager[J]. Infrared Technology, 2017, 39(4): 304-308. (in Chinese) doi: 10.11846/j.issn.1001_8891.201704003 [8] 徐苗, 梁秀玲. 中长焦透射式日盲紫外光学系统设计[J]. 光学仪器,2017,39(2):43-47.XU M, LIANG X L. Optical design of long transmission type solar blind ultraviolet system[J]. Optical Instruments, 2017, 39(2): 43-47. (in Chinese) [9] 王嘉明. 日盲紫外信号目标模拟器光学系统设计[D]. 长春: 长春理工大学, 2016: 10-12.WANG J M. Optical design of solar blind ultraviolet signal target simulator[D]. Changchun: Changchun University of Science and Technology, 2016: 10-12. (in Chinese) [10] 吴雁, 唐义, 刘健鹏, 等. 电离层遥感远紫外成像光谱仪光学系统设计[J]. 光学学报,2012,32(1):0122001. doi: 10.3788/AOS201232.0122001WU Y, TANG Y, LIU J P, et al. Optics design of far ultraviolet imaging spectrometer for ionosphere remote sensing[J]. Acta Optica Sinica, 2012, 32(1): 0122001. (in Chinese) doi: 10.3788/AOS201232.0122001 [11] 吕博, 冯睿, 寇伟, 等. 折反射式空间相机光学系统设计与杂散光抑制[J]. 中国光学,2020,13(4):822-831. doi: 10.37188/CO.2019-0036LÜ B, FENG R, KOU W, et al. Optical system design and stray light suppression of catadioptric space camera[J]. Chinese Optics, 2020, 13(4): 822-831. (in Chinese) doi: 10.37188/CO.2019-0036 [12] 张佳伦, 郑玉权, 蔺超, 等. 消像散的自由曲面棱镜光谱仪光学系统设计[J]. 中国光学,2020,13(4):842-851. doi: 10.37188/CO.2019-0049ZHANG J L, ZHENG Y Q, LIN CH, et al. Design of a freeform curved prism imaging spectrometer based on an anastigmatism[J]. Chinese Optics, 2020, 13(4): 842-851. (in Chinese) doi: 10.37188/CO.2019-0049 [13] 袁旭沧. 光学设计[M]. 北京: 北京理工大学出版社, 1988: 76-79.YUAN X C. Optical Design[M]. Beijing: Beijing Institute of Technology Press, 1988: 76-79. (in Chinese)