High-performance self-powered photodetectors based on the carbon nanomaterial/GaAs vdW heterojunctions
doi: 10.37188/CO.2021-0149
-
摘要: 基于碳纳米材料/体半导体范德华(vdW)异质结的光电器件可以同时实现碳纳米材料的超高载流子迁移率以及体半导体的优异光电性能,且具有结构简单、工艺简便、易于调控界面等优点。尤其是通过调控单壁碳纳米管(SWCNT)的直径/手性、费米能级等可以与体半导体形成能带匹配、具有原子级界面的新型混合维度vdW异质结。本文报道了一种基于(6,5)手性为主的SWCNT薄膜与n型GaAs所形成的pn结的宽光谱自驱动光电探测器,并利用石墨烯降低SWCNT薄膜内载流子的复合几率和促进载流子传输。实验结果表明,器件对405~1064 nm波段光子表现出高灵敏的光电响应,零偏压条件下最大光电响应度和比探测率分别可达1.214 A/W和2×1012 Jones。Abstract: With the advantages such as simple structure, simple process and easy interface control, the photoelectric devices based on carbon nanomaterial/bulk semiconductor van der Waals (vdW) heterojunctions can fully realize the ultrahigh carrier mobility of carbon nanomaterials and the excellent photoelectric properties of bulk semiconductors. Especially, the novel mixed-dimensional vdW heterojunctions can be prepared by controlling the diameter/chirality and Fermi level of single-walled carbon nanotubes (SWCNTs) to form atomic-level interfaces and match bandgaps with bulk semiconductors. Here, we reported a self-powered broadband photodetector based on the pn vdW heterojunctions by combining (6, 5)-enriched semiconducting SWCNT film with n-type GaAs, and used graphene to reduce the probability of carrier recombination in SWCNT film and to promote the carrier transport. The experimental results suggest that the self-powered device exhibits high-sensitivity photoelectric response toward the incident photons in the 405~1064 nm range, and that the max photoelectric responsivity of 1.214 A/W and the specific detectivity of 2 × 1012 Jones could be achieved at zero bias.
-
图 3 (a)和(b) 不同激光波长辐照下石墨烯/SWCNT膜/GaAs vdW异质结光电探测器的J-V曲线;(c)和(d) 零偏压时不同激光波长辐照下的光电响应重复性曲线
Figure 3. (a) (b) J-V curves of the graphene/SWCNT film/GaAs vdW heterojunction photodetector irradiated at different laser wavelengthes. (c) (d) Photoelectric response repeatability curves when irradiated by laser with different laser wavelengthes at zero bias
-
[1] CAI B F, YIN H, HUO T T, et al. Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors[J]. Journal of Materials Chemistry C, 2020, 8(10): 3386-3394. doi: 10.1039/C9TC06586E [2] LEI T, POCHOROVSKI I, BAO ZH N. Separation of semiconducting carbon nanotubes for flexible and stretchable electronics using polymer removable method[J]. Accounts of Chemical Research, 2017, 50(4): 1096-1104. doi: 10.1021/acs.accounts.7b00062 [3] ZHANG J, LIU S Y, NSHIMIYIMANA J P, et al. Observation of van Hove singularities and temperature dependence of electrical characteristics in suspended carbon nanotube Schottky barrier transistors[J]. Nano-Micro Letters, 2018, 10(2): 25. doi: 10.1007/s40820-017-0171-3 [4] CAI B F, SU Y J, TAO Z J, et al. Highly sensitive broadband single-walled carbon nanotube photodetectors enhanced by separated graphene nanosheets[J]. Advanced Optical Materials, 2018, 6(23): 1800791. doi: 10.1002/adom.201800791 [5] YANG L J, WANG SH, ZENG Q SH, et al.. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection[J]. Small, 2013, 9(8): 1225-1236. [6] HE X W, LÉONARD F, KONO J. Uncooled carbon nanotube photodetectors[J]. Advanced Optical Materials, 2015, 3(8): 989-1011. doi: 10.1002/adom.201500237 [7] MA Z, HAN J, YAO SH, et al. Improving the performance and uniformity of carbon-nanotube-network-based photodiodes via yttrium oxide coating and decoating[J]. ACS Applied Materials &Interfaces, 2019, 11(12): 11736-11742. [8] LIU Y, WEI N, ZENG Q SH, et al. Room temperature broadband infrared carbon nanotube photodetector with high detectivity and stability[J]. Advanced Optical Materials, 2016, 4(2): 238-245. doi: 10.1002/adom.201500529 [9] TUNE D D, FLAVEL B S. Advances in carbon nanotube-silicon heterojunction solar cells[J]. Advanced Energy Materials, 2018, 8(15): 1703241. doi: 10.1002/aenm.201703241 [10] ZHOU H X, YANG M, JI CH H, et al. Excellent-performance C60/graphene/SWCNT heterojunction with light-controlled enhancement of photocurrent[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(10): 4276-4283. [11] GONG Y P, ADHIKARI P, LIU Q F, et al. Designing the interface of carbon nanotube/biomaterials for high-performance ultra-broadband photodetection[J]. ACS Applied Materials &Interfaces, 2017, 9(12): 11016-11024. [12] LI G H, SUJA M, CHEN M G, et al. Visible-blind UV photodetector based on single-walled carbon nanotube thin film/ZnO vertical heterostructures[J]. ACS Applied Materials &Interfaces, 2017, 9(42): 37094-37104. [13] SCAGLIOTTI M, SALVATO M, DE CRESCENZI M, et al. Influence of the contact geometry on single-walled carbon nanotube/Si photodetector response[J]. Applied Nanoscience, 2018, 8(5): 1053-1058. doi: 10.1007/s13204-018-0720-1 [14] CHEN J X, OUYANG W X, YANG W, et al. Recent progress of heterojunction ultraviolet photodetectors: materials, integrations, and applications[J]. Advanced Functional Materials, 2020, 30(16): 1909909. doi: 10.1002/adfm.201909909 [15] PERIYANAGOUNDER D, WEI T C, LI T Y, et al. Fast-response, highly air-stable, and water-resistant organic photodetectors based on a single-crystal Pt complex[J]. Advanced Materials, 2020, 32(2): 1904634. doi: 10.1002/adma.201904634 [16] YANG W, CHEN J X, ZHANG Y, et al. Silicon-compatible photodetectors: trends to monolithically integrate photosensors with chip technology[J]. Advanced Functional Materials, 2019, 29(18): 1808182. doi: 10.1002/adfm.201808182 [17] SALVATO M, SCAGLIOTTI M, DE CRESCENZI M, et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors[J]. Nanotechnology, 2017, 28(43): 435201. doi: 10.1088/1361-6528/aa8797 [18] KIM Y L, JUNG H Y, PARK S, et al. Voltage-switchable photocurrents in single-walled carbon nanotube–silicon junctions for analog and digital optoelectronics[J]. Nature Photonics, 2014, 8(3): 239-243. doi: 10.1038/nphoton.2014.1 [19] REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi: 10.37188/CO.2020-0189 [20] CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. (in Chinese) doi: 10.3788/co.20191205.1057 [21] LIANG CH W, ROTH S. Electrical and optical transport of GaAs/carbon nanotube heterojunctions[J]. Nano Letters, 2008, 8(7): 1809-1812. doi: 10.1021/nl0802178 [22] LI H, LOKE W K, ZHANG Q, et al. Physical device modeling of carbon nanotube/GaAs photovoltaic cells[J]. Applied Physics Letters, 2010, 96(4): 043501. doi: 10.1063/1.3293452 [23] BEHNAM A, JOHNSON J, CHOI Y, et al. Metal-semiconductor-metal photodetectors based on single-walled carbon nanotube film–GaAs Schottky contacts[J]. Journal of Applied Physics, 2008, 103(11): 114315. doi: 10.1063/1.2938037 [24] HUO T T, YIN H, ZHOU D Y, et al. Self-powered broadband photodetector based on single-walled carbon nanotube/GaAs heterojunctions[J]. ACS Sustainable Chemistry &Engineering, 2020, 8(41): 15532-15539. [25] TAO Z J, HUO T T, YIN H, et al. Self-powered near-infrared photodetector based on single-walled carbon nanotube/graphene/GaAs double heterojunctions[J]. Semiconductor Optoelectronics, 2020, 41(2): 164-168,172. (in Chinese)