留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高超噪比宽带毫米波噪声信号光子学产生研究

黄海碧 刘文杰 孙粤辉 王安帮 秦玉文 王云才

黄海碧, 刘文杰, 孙粤辉, 王安帮, 秦玉文, 王云才. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学(中英文), 2022, 15(2): 251-258. doi: 10.37188/CO.2021-0158
引用本文: 黄海碧, 刘文杰, 孙粤辉, 王安帮, 秦玉文, 王云才. 高超噪比宽带毫米波噪声信号光子学产生研究[J]. 中国光学(中英文), 2022, 15(2): 251-258. doi: 10.37188/CO.2021-0158
HUANG Hai-bi, LIU Wen-jie, SUN Yue-hui, WANG An-bang, QIN Yu-wen, WANG Yun-cai. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. doi: 10.37188/CO.2021-0158
Citation: HUANG Hai-bi, LIU Wen-jie, SUN Yue-hui, WANG An-bang, QIN Yu-wen, WANG Yun-cai. Photonics generation of broadband millimeter wave noise signals with high excess noise ratios[J]. Chinese Optics, 2022, 15(2): 251-258. doi: 10.37188/CO.2021-0158

高超噪比宽带毫米波噪声信号光子学产生研究

基金项目: 国家自然科学基金(No. 61927811,No. 61961136002,No. 61731014);广东省引进创新创业团队项目基金
详细信息
    作者简介:

    黄海碧(1995—),女,广东湛江人,现为广东工业大学硕士研究生,主要从事光子毫米波噪声产生技术方面的研究。E-mail:hhbwbs@163.com

    王云才(1965—),男,山西太原人,博士,教授,博士生导师,1997 年于中国科学院西安光学精密机械研究所获得理学博士学位,现为广东工业大学教授,博士生导师。主要从事微波光子学与毫米波器件,硬件保密通信,密钥分发技术等领域的研究。E-mail:wangyc@gdut.edu.cn

  • 中图分类号: O43

Photonics generation of broadband millimeter wave noise signals with high excess noise ratios

Funds: Supported by the national natural science foundation of China (No. 61927811, No. 61961136002, No. 61731014); the Introduction of Innovation and Entrepreneurship Team Project of Guangdong Province
More Information
  • 摘要: 受电子器件工作频率及功率的限制,传统电子学方法产生的噪声源的超噪比通常小于20 dB,针对这一问题,本文提出了一种基于非相干光拍频产生高超噪比宽带毫米波噪声技术。首先,用两个光滤波器对宽带放大自发辐射光源进行滤波整形。将获得的两束频率不同的放大自发辐射光耦合进入光电探测器进行拍频,从而产生电噪声信号。理论分析发现,通过调节拍频光的光谱线型、线宽与功率,在当前的高速光电探测器响应水平下,可获得超过50 dB的高超噪比毫米波噪声源。在利用数值方法分析影响噪声源超噪比主要因素的基础上,通过实验方法产生了超噪比大于50 dB的毫米波噪声信号。如果采用更高速的光电探测器,这一技术可在毫米波乃至太赫兹波段构建大超噪比的噪声源。

     

  • 图 1  ASE光拍频产生毫米波噪声原理图(ASE:放大自发辐射源;OC:光耦合器;EDFA:掺饵光纤放大器;PD:光电探测器)

    Figure 1.  Block diagram of the millimeter wave noise source generated by ASE light beating. (ASE: amplified spontaneous emission; OC: optical coupler; EDFA: erbium doped fiber amplifier; PD: photodetector)

    图 2  ASE噪声光拍频产生噪声超噪比与入射光功率P0的理论曲线(100 GHz处)

    Figure 2.  The excess noise ratio versus the ASE noise power P0 at 100 GHz

    图 3  100 GHz处的ENR与PD响应度$ {\boldsymbol{R}}$的关系曲线(σ=0.1 nm,P0=10 dBm)

    Figure 3.  The relationship between the excess noise ratio and the PD responsivity $ {\boldsymbol{R}}$ at 100 GHz(σ=0.1 nm,P0=10 dBm)

    图 4  噪声源的ENR和3 dB带宽分别与两个高斯光噪声线宽σ的关系(@100 GHz,${\boldsymbol{R}}$= 0.35 A/W,P0=15 dBm)

    Figure 4.  The variation of the excess noise ratio and the 3 dB bandwidth of the noise source with the linewidth of two Gaussian optical noises.(@100 GHz, ${\boldsymbol{R}}$ = 0.35 A/W, P0=15 dBm)

    图 5  (a)ASE噪声源被两光滤波器滤波整形后的两路光谱图;(b)滤波出的两束光被耦合后的光谱图

    Figure 5.  (a) Two channel spectra of the ASE noise source filtered and shaped by two optical filters; (b) the spectra of the filtered two beams after coupling

    图 6  不同中心频率下,实验与仿真分别产生的宽带毫米波噪声源的频谱图。(a) 25 GHz;(b) 35 GHz

    Figure 6.  Power spectra of the broadband millimeter-wave noise (RBW=1 MHz) at different center frequencies. (a) 25 GHz; (b) 35 GHz. Red: experiment; blue: simulation

    图 7  毫米波噪声源超噪比的实验和模拟结果

    Figure 7.  Experimental and simulation results of the excess noise ratio of the millimeter-wave noise source

  • [1] 王璐钰, 李玉琼, 蔡榕. 空间激光干涉仪光程倾斜耦合噪声抑制[J]. 光学精密工程,2021,29(7):1491-1498.

    WANG L Y, LI Y Q, CAI R. Optical path slanting coupling noise suppression in space laser interferometer[J]. Optics and Precision Engineering, 2021, 29(7): 1491-1498. (in Chinese)
    [2] 李乐, 汪龙祺, 黄煜, 等. 光电探测系统噪声特性研究与降噪设计[J]. 光学精密工程,2020,28(12):2674-2683.

    LI L, WANG L Q, HUANG Y, et al. Research on noise characteristics and noise reduction design of photoelectric detection system[J]. Optics and Precision Engineering, 2020, 28(12): 2674-2683. (in Chinese)
    [3] 赵九龙, 马瑜, 李爽, 等. 三维医学图像的混合噪声去除方法[J]. 液晶与显示,2015,30(2):340-346.

    ZHAO J L, MA Y, LI S.et al. Hybrid Noise Removal method for 3D medical image[J]. Liquid crystal and Display, 2015, 30(2): 340-346. (in Chinese)
    [4] HSIAO H F, TU C H, CHANG D C, et al.. Noise figure verification using cold-Source and Y-factor technique for amplifier and down-converted mixer[C]. 2014 Asia-Pacific Microwave Conference, IEEE, 2014: 901-903.
    [5] PARASHARE C R, KANGASLAHTI P P, BROWN S T, et al. . Noise sources for internal calibration of millimeter-wave radiometers[C]. 2014 13th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment (MicroRad), IEEE, 2014: 157-160.
    [6] SHAHRIAR C, PAN M L, LICHTMAN M, et al. PHY-layer resiliency in OFDM communications: a tutorial[J]. IEEE Communications Surveys &Tutorials, 2015, 17(1): 292-314.
    [7] PAIK H, SASTRY N N, SANTIPRABHA I. Effectiveness of noise jamming with White Gaussian Noise and phase noise in amplitude comparison monopulse radar receivers[C]. 2014 IEEE International Conference on Electronics, IEEE, 2014: 1-5.
    [8] 余恒炜, 黎大兵, 孙晓娟, 等. 量子随机数高斯噪声信号发生器[J]. 光学精密工程,2019,27(7):1492-1499.

    YU H W, LI D B, SUN X J, et al. Quantum Random number Gaussian Noise signal generator[J]. Optics and Precision Engineering, 2019, 27(7): 1492-1499. (in Chinese)
    [9] BELAND P, LABONTE S, ROY L, et al. A novel on-wafer resistive noise source[J]. IEEE Microwave and Guided Wave Letters, 1999, 9(6): 227-229. doi: 10.1109/75.769529
    [10] 梁伟军, 高秋来. WR28低温标准噪声源[J]. 科学技术与工程,2011,11(31):7672-7676,7681. doi: 10.3969/j.issn.1671-1815.2011.31.018

    LIANG W J, GAO Q L. A WR28 cryogenic standard noise source[J]. Science Technology and Engineering, 2011, 11(31): 7672-7676,7681. (in Chinese) doi: 10.3969/j.issn.1671-1815.2011.31.018
    [11] PAWAR N Y, GANGAL S A, SHALIGRAM A D, et al. Development of X-band microwave noise source using neon gas fluorescent gas discharge tube[J]. AIP Conference Proceedings, 2021, 2335(1): 050002.
    [12] 曹逸庭. 3mm肖特基势垒二极管雪崩噪声源[J]. 红外与毫米波学报,1990,9(4):317-320.

    CAO Y T. Avalanche noise source of Schottky barrier diode in the 3 mm band[J]. Journal of Infrared and Millimeter Waves, 1990, 9(4): 317-320. (in Chinese)
    [13] GHANEM H, GONÇALVES J C A, CHEVALIER P, et al. Modeling and analysis of a broadband schottky diode noise source up to 325 GHz based on 55-nm SiGe BiCMOS technology[J]. IEEE Transactions on Microwave Theory and Techniques, 2020, 68(6): 2268-2277. doi: 10.1109/TMTT.2020.2980513
    [14] 刘玉栋, 杜磊, 孙鹏, 等. 静电放电对功率肖特基二极管I-V及低频噪声特性的影响[J]. 物理学报,2012,61(13):137203. doi: 10.7498/aps.61.137203

    LIU Y D, DU L, SUN P, et al. The effect of electrostatic discharge on the I-V and low frequency noise characterization of Schottky barrier diodes[J]. Acta Physica Sinica, 2012, 61(13): 137203. (in Chinese) doi: 10.7498/aps.61.137203
    [15] HUGGARD P G, AZCONA L, ELLISON B N, et al.. Application of 1.55 µm photomixers as local oscillators & noise sources at millimetre wavelengths[C]. Infrared and Millimeter Waves, Conference Digest of the 2004 Joint 29th International Conference on 2004 and 12th International Conference on Terahertz Electronics, IEEE, 2004: 771-772.
    [16] SONG H J, SHIMIZU N, KUKUTSU N, et al. Microwave photonic noise source from microwave to sub-terahertz wave bands and its applications to noise characterization[J]. IEEE Transactions on Microwave Theory and Techniques, 2008, 56(12): 2989-2997. doi: 10.1109/TMTT.2008.2007325
    [17] ZHAO R K, YAO T M, DUAN X D, et al.. Design of a 0.1~18GHz high-power broadband noise source[C]. 2020 International Conference on Microwave and Millimeter Wave Technology (ICMMT), IEEE, 2020: 1-3.
    [18] EHSAN N, PIEPMEIER J, SOLLY M, et al.. A robust waveguide millimeter-wave noise source[C]. 2015 European Microwave Conference (EuMC), IEEE, 2015: 853-856.
    [19] GONCALVES J C A, QUEMERAIS T, GLORIA D, et al.. A 130 to 170 GHz integrated noise source based on avalanche silicon Schottky diode in BiCMOS 55 nm for in-situ noise characterization[C]. 2017 International Conference of Microelectronic Test Structures (ICMTS), IEEE, 2017: 1-3.
    [20] GONÇALVES J C A, GHANEM H, BOUVOT S, et al. Millimeter-wave noise source development on SiGe BiCMOS 55-nm technology for applications up to 260 GHz[J]. IEEE Transactions on Microwave Theory and Techniques, 2019, 67(9): 3732-3742. doi: 10.1109/TMTT.2019.2926289
    [21] ALIMENTI F, SIMONCINI G, BROZZETTI G, et al. Millimeter-wave avalanche noise sources based on p-i-n diodes in 130 nm SiGe BiCMOS technology: device characterization and CAD modeling[J]. IEEE Access, 2020, 8: 178976-178990. doi: 10.1109/ACCESS.2020.3027384
    [22] COEN C T, FROUNCHI M, LOURENCO N E, et al. A 60-GHz SiGe radiometer calibration switch utilizing a coupled avalanche noise source[J]. IEEE Microwave and Wireless Components Letters, 2020, 30(4): 417-420. doi: 10.1109/LMWC.2020.2975735
    [23] VIDAL B. Broadband photonic microwave noise sources[J]. IEEE Photonics Technology Letters, 2020, 32(10): 592-594. doi: 10.1109/LPT.2020.2986739
    [24] CHAO E F, XIONG B, SUN CH ZH, et al.. Comprehensive design method of MUTC-PD for terahertz applications[C]. 2020 Asia Communications and Photonics Conference(ACP) and International Conference on Information Photonics and Optical Communications (IPOC). IEEE, 2020: 1-3.
  • 加载中
图(7)
计量
  • 文章访问数:  917
  • HTML全文浏览量:  542
  • PDF下载量:  123
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-13
  • 修回日期:  2021-09-01
  • 录用日期:  2021-12-10
  • 网络出版日期:  2021-12-17
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回