留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide

FENG Qin-yin QIU Guo-hua YAN De-xian Li Ji-ning Li Xiang-jun

封覃银, 裘国华, 严德贤, 李吉宁, 李向军. 基于二氧化钒宽、窄带可切换的双功能超材料吸收器研究[J]. 中国光学(中英文), 2022, 15(2): 387-403. doi: 10.37188/CO.2021-0174
引用本文: 封覃银, 裘国华, 严德贤, 李吉宁, 李向军. 基于二氧化钒宽、窄带可切换的双功能超材料吸收器研究[J]. 中国光学(中英文), 2022, 15(2): 387-403. doi: 10.37188/CO.2021-0174
FENG Qin-yin, QIU Guo-hua, YAN De-xian, Li Ji-ning, Li Xiang-jun. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 387-403. doi: 10.37188/CO.2021-0174
Citation: FENG Qin-yin, QIU Guo-hua, YAN De-xian, Li Ji-ning, Li Xiang-jun. Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide[J]. Chinese Optics, 2022, 15(2): 387-403. doi: 10.37188/CO.2021-0174

基于二氧化钒宽、窄带可切换的双功能超材料吸收器研究

详细信息
  • 中图分类号: TP394.1;TH691.9

Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide

doi: 10.37188/CO.2021-0174
Funds: Supported by the National Natural Science Foundation of China (Grant No. 62001444, No. 61871355, No. 61831012); Natural Science Foundation Zhejiang Province (Grant No. LQ20F010009, No. LY18F010016); Basic Public Welfare Research Project of Zhejiang Province (Grant No. LGF19F010003)
More Information
    Author Bio:

    FENG Qin-yin (1997—), Female, from Shaoyang, Hunan Province, China, M.S. student, mainly engaged in research on terahertz metamaterials. E-mail: 1162935753@qq.com

    QIU Guo-hua (1974—), Male, from Shaoxing, Zhejiang Province, China, Ph. D., Lecturer, received his Ph.D. degree from Zhejiang University in 2012, mainly engaged in the research of terahertz sources and devices, Email: qghfr@163.com

    YAN De-xian (1991—), Male, from Wuwei, Gansu Province, China, Ph. D., associate professor, received his Ph.D. degree from Tianjin University in 2018, mainly engaged in the research of terahertz sources and devices. E-mail: yandexian1991@cjlu.edu.cn

    Corresponding author: qghfr@163.comyandexian1991@cjlu.edu.cn
  • 摘要: 本文提出了一种宽、窄带可切换的双功能超材料吸收器。在超材料吸收器的结构中,引入了相变材料二氧化钒(VO2),仅利用单个可切换超表面就能实现不同的功能,其不同功能之间的相互转换通过VO2绝缘态和金属态之间的可逆相变特性实现。当VO2处于金属态时,设计的结构可以看作一个超材料宽带吸收器。仿真结果表明,在1.55THz至2.21THz的宽带频率范围内,吸收率超过98%。当VO2处于绝缘态时,该结构作为窄带吸收器,在共振频率2.54THz、2.93THz和3.34THz处的吸收率在95%以上,实现了完美吸收。此外,还讨论了几何参数对超材料吸收器吸收率性能的影响。由于单元结构的对称性,该吸收器在电磁波垂直入射时具有极化不敏感特性,并且在大入射角范围内仍能保持良好的吸收性能。因此,本文提出的可切换双功能超材料吸收器可广泛应用于太赫兹调制、热发射器和电磁能量采集等各种领域。

     

  • 图 1  (a)吸收器三维示意图;(b)顶部视图;(c)侧视图

    Figure 1.  The absorber (a) 3D schematic; (b) top view; (c) side view

    图 2  二氧化钒不同电导率时的(a)反射光谱;(b)吸收光谱;(c)相对阻抗的实部和(d)虚部

    Figure 2.  (a) Reflection spectrum; (b) absorption spectrum; (c) real part of and (d) imaginary part of the relative impedance with different conductivities of VO2

    图 3  二氧化钒电导率为2×105 S/m时反射和吸收光谱、相对阻抗的实部、虚部

    Figure 3.  Reflection and absorption spectra, real part and imaginary part of relative impedance when the conductivity of vanadium dioxide is 2×105 S/m

    图 4  当电导率为2×105 S/m时,吸收器单元结构参数对太赫兹吸收率的影响。(a)开口角度α;(b)上层PI介质厚度z3;(c) VO2圆盘半径R2

    Figure 4.  The influence of the structural parameters of the absorber cell: (a) the opening angle α; (b) the thickness of the upper PI medium Z3 and (c) the radius of the VO2 disk R2, on the terahertz absorptivity at the conductivity of 2×105 S/m

    图 5  1.53 THz、2.12 THz在TE极化下两个吸收峰频率处的电场强度分布

    Figure 5.  Electric field intensity distribution at the two absorption peak frequencies of 1.53 THz and 2.12 THz under TE mode

    图 6  当电导率为2×105 S/m时(a)不同入射角度时,TE极化的宽带吸收器的吸收率;(b)不同入射角度时,TM极化的宽带吸收器的吸收率;(c)不同极化角时宽带吸收器的吸收光谱图

    Figure 6.  (a) The absorption of the wide-band absorber with TE polarization at different incident angles; (b) the absorption of the wide-band absorber with TM polarization at different incident angles; (c) the absorption spectrum of the wide-band absorber with different polarization angles; at the conductivity of 2×105 S/m

    图 7  二氧化钒电导率为200 S/m时反射和吸收光谱、相对阻抗的实部、虚部

    Figure 7.  Reflection and absorption spectra, real part and imaginary part of relative impedance when the conductivity of vanadium dioxide is 200 S/m

    图 8  σ为200 S/m时,吸收器单元结构参数对太赫兹吸收率的影响;(a)开口角度(b)下层PI介质厚度Z1;(c)金属开口谐振环的宽度W而变化

    Figure 8.  The influence of the structural parameters of the absorber cell: (a) the opening angle; (b) the thickness of the lower PI medium Z1 and (c) the width of the metal split ring resonator W, on the terahertz absorption at the conductivity of 200 S/m.

    图 9  2.54 THz、2.93 THz和3.34 THzTE极化时三个吸收峰频率的电场强度分布

    Figure 9.  Electric field intensity distributions at the three absorption peak frequencies of 2.54 THz, 2.93 THz and 3.34 THz under TE mode

    图 10  当电导率为200 S/m,不同极化角时窄带吸收器的吸收光谱图

    Figure 10.  Absorption spectra of narrow-band absorbers with different polarization angles at the conductivity of 200 S/m

  • [1] BAO D, SHEN X P, CUI T J. Progress of terahertz metamaterials[J]. Acta Physica Sinica, 2015, 64(22): 228701. (in Chinese) doi: 10.7498/aps.64.228701
    [2] SONG ZH Y, WEI M L, WANG ZH SH. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 2019, 11(2): 4600607.
    [3] XU R J, LIU X Y, LIN Y SH. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures[J]. Results in Physics, 2019, 13: 102176. doi: 10.1016/j.rinp.2019.102176
    [4] CHEN L, LIAO D G, GUO X G, et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J]. Frontiers of Information Technology &Electronic Engineering, 2019, 20(5): 591-607.
    [5] LI CH Y, CHANG C C, ZHOU Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 2017, 25(21): 25842-25852. doi: 10.1364/OE.25.025842
    [6] LEE Y, KIM S J, PARK H, et al. Metamaterials and metasurfaces for sensor applications[J]. Sensors, 2017, 17(8): 1726. doi: 10.3390/s17081726
    [7] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402
    [8] SHAN Y, CHEN L, SHI CH, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350: 63-70. doi: 10.1016/j.optcom.2015.03.072
    [9] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111. doi: 10.1063/1.3276072
    [10] BAO ZH Y, WANG J CH, HU ZH D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 2019, 27(22): 31435-31445. doi: 10.1364/OE.27.031435
    [11] FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. (in Chinese) doi: 10.37188/CO.2021-0075
    [12] ZHANG Y B, LIU W W, LI ZH CH, et al. Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS2 films[J]. Applied Physics Letters, 2017, 111(11): 111109. doi: 10.1063/1.4992045
    [13] CHEN SH Q, CHENG H, YANG H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25): 253104. doi: 10.1063/1.3670333
    [14] KONG H, LI G F, JIN Z M, et al. Polarization-independent metamaterial absorber for terahertz frequency[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(6): 649-656. doi: 10.1007/s10762-012-9906-x
    [15] RYZHII V, OTSUJI T, RYZHII M, et al. Graphene terahertz uncooled bolometers[J]. Journal of Physics D:Applied Physics, 2013, 46(6): 065102. doi: 10.1088/0022-3727/46/6/065102
    [16] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628
    [17] WANG Y, CUI Z J, ZHU D Y, et al. Multiband terahertz absorber and selective sensing performance[J]. Optics Express, 2019, 27(10): 14133-14143. doi: 10.1364/OE.27.014133
    [18] ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese)
    [19] REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi: 10.37188/CO.2020-0189
    [20] YUAN Y H, CHEN X Y, HU F R, et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016. (in Chinese) doi: 10.3788/CJL201946.0614016
    [21] WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 2014, 22(7): 8473-8489. doi: 10.1364/OE.22.008473
    [22] WU Y, RUAN X ZH, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters[J]. Optics Express, 2013, 21(18): 21395-21402. doi: 10.1364/OE.21.021395
    [23] LIU H, WANG ZH H, LI L, et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber[J]. Scientific Reports, 2019, 9(1): 5751. doi: 10.1038/s41598-019-42293-9
    [24] HU F R, WANG H, ZHANG X W, et al. Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 4700207.
    [25] QAZILBASH M M, BREHM M, CHAE B G, et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging[J]. Science, 2007, 318(5857): 1750-1753. doi: 10.1126/science.1150124
    [26] HALLMAN K A, MILLER K J, BAYDIN A, et al. Sub-picosecond response time of a hybrid VO2: silicon waveguide at 1550 nm[J]. Advanced Optical Materials, 2021, 9(4): 2001721. doi: 10.1002/adom.202001721
    [27] YAN D X, MENG M, LI J SH, et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 2020, 28(20): 29843-29854. doi: 10.1364/OE.404829
    [28] SONG ZH Y, CHEN A P, ZHANG J H. Terahertz switching between broadband absorption and narrowband absorption[J]. Optics Express, 2020, 28(2): 2037-2044. doi: 10.1364/OE.376085
    [29] ZHANG M, SONG ZH Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J]. Optics Express, 2020, 28(8): 11780-11788. doi: 10.1364/OE.391891
    [30] HUANG J, LI J N, YANG Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Optics Express, 2020, 28(12): 17832-17840. doi: 10.1364/OE.394359
    [31] SONG ZH Y, ZHANG J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 2020, 28(8): 12487-12497. doi: 10.1364/OE.391066
    [32] LIU W W, SONG ZH Y. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon, 2021, 174: 617-624. doi: 10.1016/j.carbon.2020.12.001
    [33] CHU Q H, YANG M SH, CHEN J, et al. Characteristics of tunable Terahertz multi-band absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214003. (in Chinese) doi: 10.3788/CJL201946.1214003
    [34] ZHANG CH Y, ZHANG H, LING F, et al. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene[J]. Applied Optics, 2021, 60(16): 4835-4840. doi: 10.1364/AO.426396
    [35] ZHOU R H, JIANG T T, PENG ZH, et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2[J]. Optical Materials, 2021, 114: 110915. doi: 10.1016/j.optmat.2021.110915
    [36] CHEN A P, SONG ZH Y. Tunable isotropic absorber with phase change material VO2[J]. IEEE Transactions on Nanotechnology, 2020, 19: 197-200. doi: 10.1109/TNANO.2020.2974801
    [37] PAN W, SHEN T, MA Y, et al. Dual-band and polarization-independent metamaterial terahertz narrowband absorber[J]. Applied Optics, 2021, 60(8): 2235-2241. doi: 10.1364/AO.415461
    [38] BIAN J M, WANG M H, SUN H J, et al. Thickness-modulated metal–insulator transition of VO2 film grown on sapphire substrate by MBE[J]. Journal of Materials Science, 2016, 51(13): 6149-6155. doi: 10.1007/s10853-016-9863-1
    [39] SUN H J, WANG M H, BIAN J M, et al. Terahertz and metal-insulator transition properties of VO2 film grown on sapphire substrate with MBE[J]. Journal of Inorganic Materials, 2017, 32(4): 437-442. doi: 10.15541/jim20160456
  • 加载中
图(10)
计量
  • 文章访问数:  1283
  • HTML全文浏览量:  698
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-25
  • 修回日期:  2021-10-21
  • 网络出版日期:  2022-01-08
  • 刊出日期:  2022-03-21

目录

    /

    返回文章
    返回