Wide and narrow band switchable bi-functional metamaterial absorber based on vanadium dioxide
doi: 10.37188/CO.2021-0174
-
摘要: 本文提出了一种宽、窄带可切换的双功能超材料吸收器。在超材料吸收器的结构中,引入了相变材料二氧化钒(VO2),仅利用单个可切换超表面就能实现不同的功能,其不同功能之间的相互转换通过VO2绝缘态和金属态之间的可逆相变特性实现。当VO2处于金属态时,设计的结构可以看作一个超材料宽带吸收器。仿真结果表明,在1.55THz至2.21THz的宽带频率范围内,吸收率超过98%。当VO2处于绝缘态时,该结构作为窄带吸收器,在共振频率2.54THz、2.93THz和3.34THz处的吸收率在95%以上,实现了完美吸收。此外,还讨论了几何参数对超材料吸收器吸收率性能的影响。由于单元结构的对称性,该吸收器在电磁波垂直入射时具有极化不敏感特性,并且在大入射角范围内仍能保持良好的吸收性能。因此,本文提出的可切换双功能超材料吸收器可广泛应用于太赫兹调制、热发射器和电磁能量采集等各种领域。Abstract: A wide-band and narrow-band switchable bi-functional metamaterial absorber is presented in this paper. The phase change material vanadium dioxide (VO2) is introduced in the structure of the metamaterial absorber, and different functions can be achieved by using only a single switchable metasurface. The mutual conversion of different functions is realized by the reversible phase transition between the VO2 insulating state and the metal state. When VO2 is in metallic state, the designed structure can be regarded as a metamaterial wide-band absorber. The simulation results show that the absorption is over 98% in the frequency range of 1.55 THz to 2.21 THz. When VO2 is in the insulating state, the structure acts as a narrow-band absorber, and the absorption at resonance frequencies of 2.54, 2.93 and 3.34 THz is over 95%. In addition, the effect of geometric parameters on the absorption of metamaterial absorber is discussed. Because of the symmetry of the element structure, the absorber is insensitive to the polarization when the electromagnetic wave is vertically incident, and it can keep good absorption performance with the large incident angle. Therefore, the switchable bi-functional metamaterial absorber proposed in this paper can be widely used in terahertz modulation, thermal emitters and electromagnetic energy acquisition, etc.
-
Key words:
- metamaterial /
- vanadium dioxide /
- bi-function /
- absorber
-
图 4 当电导率为2×105 S/m时,吸收器单元结构参数对太赫兹吸收率的影响。(a)开口角度α;(b)上层PI介质厚度z3;(c) VO2圆盘半径R2
Figure 4. The influence of the structural parameters of the absorber cell: (a) the opening angle α; (b) the thickness of the upper PI medium Z3 and (c) the radius of the VO2 disk R2, on the terahertz absorptivity at the conductivity of 2×105 S/m
图 6 当电导率为2×105 S/m时(a)不同入射角度时,TE极化的宽带吸收器的吸收率;(b)不同入射角度时,TM极化的宽带吸收器的吸收率;(c)不同极化角时宽带吸收器的吸收光谱图
Figure 6. (a) The absorption of the wide-band absorber with TE polarization at different incident angles; (b) the absorption of the wide-band absorber with TM polarization at different incident angles; (c) the absorption spectrum of the wide-band absorber with different polarization angles; at the conductivity of 2×105 S/m
图 8 当σ为200 S/m时,吸收器单元结构参数对太赫兹吸收率的影响;(a)开口角度(b)下层PI介质厚度Z1;(c)金属开口谐振环的宽度W而变化
Figure 8. The influence of the structural parameters of the absorber cell: (a) the opening angle; (b) the thickness of the lower PI medium Z1 and (c) the width of the metal split ring resonator W, on the terahertz absorption at the conductivity of 200 S/m.
-
[1] BAO D, SHEN X P, CUI T J. Progress of terahertz metamaterials[J]. Acta Physica Sinica, 2015, 64(22): 228701. (in Chinese) doi: 10.7498/aps.64.228701 [2] SONG ZH Y, WEI M L, WANG ZH SH. Terahertz absorber with reconfigurable bandwidth based on isotropic vanadium dioxide metasurfaces[J]. IEEE Photonics Journal, 2019, 11(2): 4600607. [3] XU R J, LIU X Y, LIN Y SH. Tunable ultra-narrowband terahertz perfect absorber by using metal-insulator-metal microstructures[J]. Results in Physics, 2019, 13: 102176. doi: 10.1016/j.rinp.2019.102176 [4] CHEN L, LIAO D G, GUO X G, et al. Terahertz time-domain spectroscopy and micro-cavity components for probing samples: a review[J]. Frontiers of Information Technology &Electronic Engineering, 2019, 20(5): 591-607. [5] LI CH Y, CHANG C C, ZHOU Q L, et al. Resonance coupling and polarization conversion in terahertz metasurfaces with twisted split-ring resonator pairs[J]. Optics Express, 2017, 25(21): 25842-25852. doi: 10.1364/OE.25.025842 [6] LEE Y, KIM S J, PARK H, et al. Metamaterials and metasurfaces for sensor applications[J]. Sensors, 2017, 17(8): 1726. doi: 10.3390/s17081726 [7] LANDY N I, SAJUYIGBE S, MOCK J J, et al. Perfect metamaterial absorber[J]. Physical Review Letters, 2008, 100(20): 207402. doi: 10.1103/PhysRevLett.100.207402 [8] SHAN Y, CHEN L, SHI CH, et al. Ultrathin flexible dual band terahertz absorber[J]. Optics Communications, 2015, 350: 63-70. doi: 10.1016/j.optcom.2015.03.072 [9] WEN Q Y, ZHANG H W, XIE Y S, et al. Dual band terahertz metamaterial absorber: design, fabrication, and characterization[J]. Applied Physics Letters, 2009, 95(24): 241111. doi: 10.1063/1.3276072 [10] BAO ZH Y, WANG J CH, HU ZH D, et al. Coordinated multi-band angle insensitive selection absorber based on graphene metamaterials[J]. Optics Express, 2019, 27(22): 31435-31445. doi: 10.1364/OE.27.031435 [11] FANG X M, JIANG X W, WU H. Dual-wavelength narrow-bandwidth dielectric metamaterial absorber[J]. Chinese Optics, 2021, 14(6): 1327-1340. (in Chinese) doi: 10.37188/CO.2021-0075 [12] ZHANG Y B, LIU W W, LI ZH CH, et al. Ultrathin polarization-insensitive wide-angle broadband near-perfect absorber in the visible regime based on few-layer MoS2 films[J]. Applied Physics Letters, 2017, 111(11): 111109. doi: 10.1063/1.4992045 [13] CHEN SH Q, CHENG H, YANG H F, et al. Polarization insensitive and omnidirectional broadband near perfect planar metamaterial absorber in the near infrared regime[J]. Applied Physics Letters, 2011, 99(25): 253104. doi: 10.1063/1.3670333 [14] KONG H, LI G F, JIN Z M, et al. Polarization-independent metamaterial absorber for terahertz frequency[J]. Journal of Infrared,Millimeter,and Terahertz Waves, 2012, 33(6): 649-656. doi: 10.1007/s10762-012-9906-x [15] RYZHII V, OTSUJI T, RYZHII M, et al. Graphene terahertz uncooled bolometers[J]. Journal of Physics D:Applied Physics, 2013, 46(6): 065102. doi: 10.1088/0022-3727/46/6/065102 [16] SCHURIG D, MOCK J J, JUSTICE B J, et al. Metamaterial electromagnetic cloak at microwave frequencies[J]. Science, 2006, 314(5801): 977-980. doi: 10.1126/science.1133628 [17] WANG Y, CUI Z J, ZHU D Y, et al. Multiband terahertz absorber and selective sensing performance[J]. Optics Express, 2019, 27(10): 14133-14143. doi: 10.1364/OE.27.014133 [18] ZHANG J F, YUAN X D, QIN SH Q. Tunable terahertz and optical metamaterials[J]. Chinese Optics, 2014, 7(3): 349-364. (in Chinese) [19] REN ZH H, ZHONG M Z, YANG J H, et al. A polarization-sensitive photodetector based on a AsP/MoS2 heterojunction[J]. Chinese Optics, 2021, 14(1): 135-144. (in Chinese) doi: 10.37188/CO.2020-0189 [20] YUAN Y H, CHEN X Y, HU F R, et al. Terahertz amplitude modulator based on metasurface/ion-gel/graphene hybrid structure[J]. Chinese Journal of Lasers, 2019, 46(6): 0614016. (in Chinese) doi: 10.3788/CJL201946.0614016 [21] WEIS P, GARCIA-POMAR J L, RAHM M. Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene[J]. Optics Express, 2014, 22(7): 8473-8489. doi: 10.1364/OE.22.008473 [22] WU Y, RUAN X ZH, CHEN C H, et al. Graphene/liquid crystal based terahertz phase shifters[J]. Optics Express, 2013, 21(18): 21395-21402. doi: 10.1364/OE.21.021395 [23] LIU H, WANG ZH H, LI L, et al. Vanadium dioxide-assisted broadband tunable terahertz metamaterial absorber[J]. Scientific Reports, 2019, 9(1): 5751. doi: 10.1038/s41598-019-42293-9 [24] HU F R, WANG H, ZHANG X W, et al. Electrically triggered tunable terahertz band-pass filter based on VO2 hybrid metamaterial[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(3): 4700207. [25] QAZILBASH M M, BREHM M, CHAE B G, et al. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging[J]. Science, 2007, 318(5857): 1750-1753. doi: 10.1126/science.1150124 [26] HALLMAN K A, MILLER K J, BAYDIN A, et al. Sub-picosecond response time of a hybrid VO2: silicon waveguide at 1550 nm[J]. Advanced Optical Materials, 2021, 9(4): 2001721. doi: 10.1002/adom.202001721 [27] YAN D X, MENG M, LI J SH, et al. Vanadium dioxide-assisted broadband absorption and linear-to-circular polarization conversion based on a single metasurface design for the terahertz wave[J]. Optics Express, 2020, 28(20): 29843-29854. doi: 10.1364/OE.404829 [28] SONG ZH Y, CHEN A P, ZHANG J H. Terahertz switching between broadband absorption and narrowband absorption[J]. Optics Express, 2020, 28(2): 2037-2044. doi: 10.1364/OE.376085 [29] ZHANG M, SONG ZH Y. Terahertz bifunctional absorber based on a graphene-spacer-vanadium dioxide-spacer-metal configuration[J]. Optics Express, 2020, 28(8): 11780-11788. doi: 10.1364/OE.391891 [30] HUANG J, LI J N, YANG Y, et al. Broadband terahertz absorber with a flexible, reconfigurable performance based on hybrid-patterned vanadium dioxide metasurfaces[J]. Optics Express, 2020, 28(12): 17832-17840. doi: 10.1364/OE.394359 [31] SONG ZH Y, ZHANG J H. Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies[J]. Optics Express, 2020, 28(8): 12487-12497. doi: 10.1364/OE.391066 [32] LIU W W, SONG ZH Y. Terahertz absorption modulator with largely tunable bandwidth and intensity[J]. Carbon, 2021, 174: 617-624. doi: 10.1016/j.carbon.2020.12.001 [33] CHU Q H, YANG M SH, CHEN J, et al. Characteristics of tunable Terahertz multi-band absorber[J]. Chinese Journal of Lasers, 2019, 46(12): 1214003. (in Chinese) doi: 10.3788/CJL201946.1214003 [34] ZHANG CH Y, ZHANG H, LING F, et al. Dual-regulated broadband terahertz absorber based on vanadium dioxide and graphene[J]. Applied Optics, 2021, 60(16): 4835-4840. doi: 10.1364/AO.426396 [35] ZHOU R H, JIANG T T, PENG ZH, et al. Tunable broadband terahertz absorber based on graphene metamaterials and VO2[J]. Optical Materials, 2021, 114: 110915. doi: 10.1016/j.optmat.2021.110915 [36] CHEN A P, SONG ZH Y. Tunable isotropic absorber with phase change material VO2[J]. IEEE Transactions on Nanotechnology, 2020, 19: 197-200. doi: 10.1109/TNANO.2020.2974801 [37] PAN W, SHEN T, MA Y, et al. Dual-band and polarization-independent metamaterial terahertz narrowband absorber[J]. Applied Optics, 2021, 60(8): 2235-2241. doi: 10.1364/AO.415461 [38] BIAN J M, WANG M H, SUN H J, et al. Thickness-modulated metal–insulator transition of VO2 film grown on sapphire substrate by MBE[J]. Journal of Materials Science, 2016, 51(13): 6149-6155. doi: 10.1007/s10853-016-9863-1 [39] SUN H J, WANG M H, BIAN J M, et al. Terahertz and metal-insulator transition properties of VO2 film grown on sapphire substrate with MBE[J]. Journal of Inorganic Materials, 2017, 32(4): 437-442. doi: 10.15541/jim20160456