留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

斜照明式彩色共聚焦测量系统设计及其实验研究

张雅丽 余卿 尚文键 王翀 刘婷 王寅 程方

张雅丽, 余卿, 尚文键, 王翀, 刘婷, 王寅, 程方. 斜照明式彩色共聚焦测量系统设计及其实验研究[J]. 中国光学(中英文), 2022, 15(3): 514-524. doi: 10.37188/CO.2021-0181
引用本文: 张雅丽, 余卿, 尚文键, 王翀, 刘婷, 王寅, 程方. 斜照明式彩色共聚焦测量系统设计及其实验研究[J]. 中国光学(中英文), 2022, 15(3): 514-524. doi: 10.37188/CO.2021-0181
ZHANG Ya-li, YU Qing, SHANG Wen-jian, WANG Chong, LIU Ting, WANG Yin, CHENG Fang. Chromatic confocal measurement system and its experimental study based on inclined illumination[J]. Chinese Optics, 2022, 15(3): 514-524. doi: 10.37188/CO.2021-0181
Citation: ZHANG Ya-li, YU Qing, SHANG Wen-jian, WANG Chong, LIU Ting, WANG Yin, CHENG Fang. Chromatic confocal measurement system and its experimental study based on inclined illumination[J]. Chinese Optics, 2022, 15(3): 514-524. doi: 10.37188/CO.2021-0181

斜照明式彩色共聚焦测量系统设计及其实验研究

doi: 10.37188/CO.2021-0181
基金项目: 国家自然科学基金资助项目(No. 52075190, No. 62075067);福建省科技计划项目(No. 2019I0013);华侨大学中青年教师科研提升资助计划项目(No. ZQN-PY604)。
详细信息
    作者简介:

    张雅丽(1997—),女,安徽六安人,硕士研究生,2019年于山东科技大学获得学士学位,主要研究方向为光电检测。E-mail: 1612737648@qq.com

    余 卿(1983—),男,江西新余人,博士,副教授,2005年,2011年于合肥工业大学分别获得学士、博士学位,主要研究方向为光电检测、精密机械设计等。E-mail: yuqing@hqu.edu.cn

  • 中图分类号: TH742

Chromatic confocal measurement system and its experimental study based on inclined illumination

Funds: Supported by National Natural Science Foundation of China (No. 52075190, No. 62075067); Science and Technology Program of Fujian, China (No. 2019I0013); Promotion Program for Young and Middle-Aged Teachers in Science and Technology Research of Huaqiao University (No. ZQN-PY604).
More Information
  • 摘要: 彩色共聚焦测量技术因无需轴向扫描,测量精度和测量效率高等优点,被广泛应用于工业领域,如高度测量和透明材料厚度检测等。然而,常见的彩色共聚焦系统多为同轴照明结构,即照明光轴和成像光轴都垂直于被测试样,系统的信噪比和光能利用率大大降低。现有的斜照明系统成像面光点漂移量较大,测量精度和应用范围受限。为此,本文提出一种改进的斜照明式彩色共聚焦测量方法,将现有斜照明系统的“V字形”结构调整为“三轴结构”,通过增加调节支路限制光点的漂移;同时,利用面阵彩色相机作为光电接收器件,结合颜色转换算法通过光点颜色得到所需高度值。本文先进行标定实验确定本装置的测量范围及精度;再依次以自制台阶和透明材料作为测量对象,得到相应的被测值。同时,为了验证改进后的系统性能,在相同条件下利用“V字型”系统进行对比实验。实验结果表明,该系统的轴向测量范围为350 μm,重复性优于1.69,轴向测量精度可达到微米级,且该系统具有良好的透明材料厚度测量能力。通过对比试验可以验证,系统对于光点漂移具有良好的抑制效果,且抑制后系统的测量准确度有明显提升。

     

  • 图 1  彩色共聚焦系统原理图

    Figure 1.  Schematic diagram of the chromatic confocal measurement system

    图 2  “V字型”斜照明式彩色共聚焦系统。(a) 系统原理图; (b) 光点漂移示意图

    Figure 2.  Inclined illumination chromatic confocal system with V-shaped structure. (a) Schematic diagram of the system; (b) spot drift diagram

    图 3  平面镜反射示意图

    Figure 3.  Schematic diagram of the reflection by the plane mirror

    图 4  改进后的斜照明式彩色共聚焦测量方案。(a) 系统原理图; (b) 抑制后的光点示意图

    Figure 4.  The improved inclined illumination chromatic confocal measurement system. (a) Schematic diagram of the system; (b) improved spot drift diagram

    图 5  不同系统的轴向光强响应。(a) 共焦系统的轴向光强响应; (b) 彩色共聚焦系统的轴向光强响应

    Figure 5.  Axial light intensity response of different systems. (a) Axial light intensity response ofconfocal system; (b) axial light intensity response of chromatic confocal system.

    图 6  轴向位移与聚焦点位移的几何关系

    Figure 6.  Geometric relation between axial displacement and focal displacement

    图 7  不同波长位置处的光谱光强分布

    Figure 7.  Spectral light intensity distribution with different wavelengths

    图 8  (a) RGB颜色空间与 (b) HSI颜色空间

    Figure 8.  (a) RGB color space and (b) HSI color space

    图 9  三轴结构的斜照明式彩色共聚焦系统图

    Figure 9.  Inclined illumination chromatic confocal system with a triaxial structure

    图 10  样品位于不同轴向位置时相机采集到的图像

    Figure 10.  Images obtained by the camera when the specimen is at different axial positions

    图 11  标定实验。(a) 标定实验结果; (b) 线性拟合结果

    Figure 11.  Calibration experiment. (a) Calibration result; (b) linear fitting result

    图 12  台阶实物图

    Figure 12.  Picture of the step

    图 13  量块表面H值测量结果

    Figure 13.  H value of gauge block

    图 14  透明材料实物图

    Figure 14.  Picture of the transparent glass slides

    图 15  透明材料测量颜色示意图

    Figure 15.  Color diagram of transparent specimen

    图 16  “V字型”结构的斜照明式彩色共聚焦系统图

    Figure 16.  Inclined illumination chromatic confocal system with the V-shaped structure

    图 17  光点漂移抑制效果对比图。(a) “V字型”系统; (b) 三轴结构系统

    Figure 17.  Contrast diagram of the spots drift suppression effect. (a) V-shaped structure; (b) triaxial structure

    图 18  光点漂移的像素计算

    Figure 18.  Pixel calculation of the spot drift

    图 19  改进前系统的标定实验。(a) 标定实验结果; (b) 线性拟合结果

    Figure 19.  Calibration experiment before improvement. (a) Calibration result; (b) linear fitting result

    图 20  量块表面H值测量结果

    Figure 20.  H value of gauge block

    图 21  透明材料测量颜色示意图

    Figure 21.  Color diagram of transparent specimen

    表  1  标定实验数据

    Table  1.   Calibration of experimental data

    NumberAxial displacement/μmH value
    10120.00
    250119.99
    3100119.93
    4150118.15
    5200114.21
    625091.84
    730076.19
    835063.39
    940054.37
    1045047.88
    1150038.96
    1255030.32
    1360023.24
    1465016.77
    1570011.62
    167506.58
    178007.01
    188508.98
    199009.78
    2095010.06
    下载: 导出CSV

    表  2  台阶实验数据及台阶高度计算结果

    Table  2.   Experimental data and calculation results of step height

    NumberH value of
    1.08 mm
    H value of
    1.03 mm
    H Value of difference
    119.6828.108.42
    219.6228.118.49
    319.6728.088.41
    419.6228.078.45
    519.6728.098.42
    619.6228.078.45
    719.6928.128.43
    819.6428.068.42
    919.6828.158.47
    1019.6928.088.39
    1119.6828.038.35
    1219.6628.088.42
    1319.7328.148.41
    1419.6728.088.41
    1519.6328.078.44
    1619.6527.527.87
    1719.6528.078.42
    1819.6728.078.40
    1919.6528.088.43
    2019.6428.108.46
    The average value of the difference8.40
    The height value of the step (μm)55.44
    Relative error−1.91%
    下载: 导出CSV

    表  3  透明材料实验数据及厚度计算结果

    Table  3.   Experimental data and calculation results of transparent specimen

    NumberH value of upper surfaceH value of lower surfaceH Value of difference
    129.2341.6312.40
    229.1041.3012.20
    329.1041.7512.65
    429.6641.4611.80
    529.1240.7111.59
    629.6641.3511.69
    729.2040.6611.46
    829.0641.5912.53
    929.6639.8910.23
    1029.2640.7211.46
    1129.1440.7111.57
    1229.6640.8111.15
    1329.7040.7611.06
    1429.6140.7411.13
    1529.6940.6610.97
    1629.0940.5611.47
    1729.2240.4211.20
    1829.6440.8411.20
    1929.2040.6711.47
    2029.1340.8311.70
    The average value of the difference11.55
    The thickness value of the transparent specimen (μm)184.21
    Relative error1.73%
    下载: 导出CSV

    表  4  标定实验数据

    Table  4.   Calibration experimental data

    NumberAxial displacement(μm)H value
    10120.00
    250119.98
    3100118.78
    4150116.55
    5200112.80
    625094.00
    730086.06
    835078.00
    940069.16
    1045061.38
    1150054.19
    1255048.03
    1360040.83
    1465032.96
    1570025.58
    1675018.36
    1780012.10
    188506.18
    199005.14
    2095010.37
    下载: 导出CSV
  • [1] 郑毅. 垂直扫描白光干涉表面形貌测量软件系统研究[D]. 武汉: 华中科技大学, 2015.

    ZHENG Y. A research on software system of vertical scanning white light interferometry measurement of surface topography[D]. Wuhan: Huazhong University of Science & Technology, 2015. (in Chinese)
    [2] YANG S CH, LIU J W, XU L F, et al. A new approach to explore the surface profile of clay soil using white light interferometry[J]. Sensors, 2020, 20(11): 3009. doi: 10.3390/s20113009
    [3] 李晓洁, 赵凯, 郑兴明. 基于激光三角法的地表粗糙度测试仪的研制[J]. 农业工程学报,2012,28(8):116-121. doi: 10.3969/j.issn.1002-6819.2012.08.018

    LI X J, ZHAO K, ZHENG X M. Development of surface roughness tester based on laser triangulation method[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 116-121. (in Chinese) doi: 10.3969/j.issn.1002-6819.2012.08.018
    [4] 周兴敏, 刘恒彪, 葛剑敏. 激光三角测量中物面反射光斑重心偏移的修正[J]. 光学学报,2015,35(5):0512001.

    ZHOU X M, LIU H B, GE J M. Reflected spot center offset correction in laser triangulation measurement[J]. Acta Optica Sinica, 2015, 35(5): 0512001. (in Chinese)
    [5] 尹云飞, 刘兆武, 吉日嘎兰图, 等. 二维光栅位移测量技术综述[J]. 中国光学,2020,13(6):1224-1238.

    YIN Y F, LIU ZH W, JIRIGALANTU, et al. Overview of 2D grating displacement measurement technology[J]. Chinese Optics, 2020, 13(6): 1224-1238. (in Chinese)
    [6] HUANG X ZH, CAO Y P, YANG CH ZH, et al. A single-shot 3D measuring method based on quadrature phase-shifting color composite grating projection[J]. Applied Sciences, 2021, 11(6): 2522. doi: 10.3390/app11062522
    [7] 余卿, 余晓芬, 崔长彩, 等. 并行共焦测量中的并行光源技术综述[J]. 中国光学,2013,6(5):652-659.

    YU Q, YU X F, CUI CH C, et al. Survey of parallel light source technology in parallel confocal measurement[J]. Chinese Optics, 2013, 6(5): 652-659. (in Chinese)
    [8] 赵家旺, 张运海, 王发民, 等. 线扫描虚拟结构调制共聚焦显微成像[J]. 中国光学,2021,14(2):431-445.

    ZHAO J W, ZHANG Y H, WANG F M, et al. Line-scanning confocal microscopic imaging based on virtual structured modulation[J]. Chinese Optics, 2021, 14(2): 431-445. (in Chinese)
    [9] 张昆. 基于色域空间调制技术的彩色共聚焦三维形貌测量系统及其实验研究[D]. 厦门: 华侨大学, 2020.

    ZHANG K. Chromatic confocal three-dimensional topography measurement system based on color spatial modulation technology and experimental research[D]. Xiamen: Huaqiao University, 2020. (in Chinese)
    [10] 唐兴, 王琦, 马小军, 等. 靶丸内表面轮廓的白光共焦光谱测量技术[J]. 中国光学,2020,13(2):266-272.

    TANG X, WANG Q, MA X J, et al. Determination of the inner-surface profile of a capsule using chromatic confocal spectroscopy[J]. Chinese Optics, 2020, 13(2): 266-272. (in Chinese)
    [11] 邹景武, 余卿, 程方. 差动式彩色共聚焦粗糙度评定系统及实验研究[J]. 中国光学,2020,13(5):1103-1114.

    ZOU J W, YU Q, CHENG F. Differential chromatic confocal roughness evaluation system and experimental research[J]. Chinese Optics, 2020, 13(5): 1103-1114. (in Chinese)
    [12] FU SH W, KOR W S, CHENG F, et al. In-situ measurement of surface roughness using chromatic confocal sensor[J]. Procedia CIRP, 2020, 94: 780-784. doi: 10.1016/j.procir.2020.09.133
    [13] 马敬, 齐月静, 卢增雄, 等. 光谱共焦位移传感器线性色散物镜设计[J]. 中国激光,2019,46(7):0704009.

    MA J, QI Y J, LU Z X, et al. Design of linear dispersive objective for chromatic confocal displacement sensor[J]. Chinese Journal of Lasers, 2019, 46(7): 0704009. (in Chinese)
    [14] YU Q, ZHANG K, CUI CH C, et al. Method of thickness measurement for transparent specimens with chromatic confocal microscopy[J]. Applied Optics, 2018, 57(33): 9722-9728. doi: 10.1364/AO.57.009722
    [15] 张雅丽, 余卿, 程方, 等. 光纤束并行彩色共聚焦测量系统及实验研究[J]. 仪器仪表学报,2020,41(12):23-31.

    ZHANG Y L, YU Q, CHENG F, et al. Parallel chromatic confocal measurement system based on optical fiber bundle and its experimental study[J]. Chinese Journal of Scientific Instrument, 2020, 41(12): 23-31. (in Chinese)
    [16] 张一, 余卿, 张昆, 等. 基于数字微镜器件的并行彩色共聚焦测量系统[J]. 光学 精密工程,2020,28(4):859-866.

    ZHANG Y, YU Q, ZHANG K, et al. Parallel chromatic confocal measurement system based on digital micromirror device[J]. Optics and Precision Engineering, 2020, 28(4): 859-866. (in Chinese)
    [17] ZHANG Z L, LU R SH. Initial structure of dispersion objective for chromatic confocal sensor based on doublet lens[J]. Optics and Lasers in Engineering, 2021, 139: 106424.
    [18] LU W L, CHEN CH, WANG J, et al. Characterization of the displacement response in chromatic confocal microscopy with a hybrid radial basis function network[J]. Optics Express, 2019, 27(16): 22737-22752.
    [19] LI J F, ZHAO Y L, DU H, et al. Adaptive modal decomposition based overlapping-peaks extraction for thickness measurement in chromatic confocal microscopy[J]. Optics Express, 2020, 28(24): 36176-36187.
    [20] SATO R, CHEN CH, MATSUKUMA H, et al. A new signal processing method for a differential chromatic confocal probe with a mode-locked femtosecond laser[J]. Measurement Science and Technology, 2020, 31(9): 094004.
    [21] BERKOVIC G, ZILBERMAN S, SHAFIR E, et al. Chromatic confocal displacement sensing at oblique incidence angles[J]. Applied Optics, 2020, 59(10): 3183-3186.
    [22] YU Q, ZHANG Y L, SHANG W J, et al. Thickness measurement for glass slides based on chromatic confocal microscopy with inclined illumination[J]. Photonics, 2021, 8(5): 170.
  • 加载中
图(21) / 表(4)
计量
  • 文章访问数:  1103
  • HTML全文浏览量:  715
  • PDF下载量:  173
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-21
  • 修回日期:  2021-11-17
  • 录用日期:  2022-01-21
  • 网络出版日期:  2022-02-18
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!