留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于焦面复制方法的自适应光学系统静态像差校正技术

张天宇 王钢 张熙 窦江培

张天宇, 王钢, 张熙, 窦江培. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学(中英文), 2022, 15(3): 545-551. doi: 10.37188/CO.2021-0182
引用本文: 张天宇, 王钢, 张熙, 窦江培. 基于焦面复制方法的自适应光学系统静态像差校正技术[J]. 中国光学(中英文), 2022, 15(3): 545-551. doi: 10.37188/CO.2021-0182
ZHANG Tian-yu, WANG Gang, ZHANG Xi, DOU Jiang-pei. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. doi: 10.37188/CO.2021-0182
Citation: ZHANG Tian-yu, WANG Gang, ZHANG Xi, DOU Jiang-pei. Staticaberration correction technique for adaptive optics system based on focal-plane copy approach[J]. Chinese Optics, 2022, 15(3): 545-551. doi: 10.37188/CO.2021-0182

基于焦面复制方法的自适应光学系统静态像差校正技术

doi: 10.37188/CO.2021-0182
基金项目: 国家自然科学基金项目(No. 11827804,No. U2031210,No. 11673042);中国载人航天工程巡天空间望远镜专项科学研究经费(No. CMS-CSST-2021-A11);中科院对外合作重点项目(No. 114A32KYSB20160057);中科院战略性先导科技专项A类资助(No. XDA15010300)。
详细信息
    作者简介:

    张天宇(1992—),男,江苏南京人,博士研究生,2019年于桂林电子科技大学获得硕士学位,主要从事自适应光学自动控制方面的研究。E-mail: tyzhang2019@niaot.ac.cn

    王 钢(1988—),男,黑龙江齐齐哈尔人,博士,2020年于中国科学院大学获得博士学位,主要从事太阳自适应光学并行优化算法及变形镜静态误差校正的研究。E-mail: gwang@niaot.ac.cn

    张 熙(1984—),江苏南京人,男,博士,副研究员,硕士生导师,2013年于中国科学院大学获得博士学位,主要从事自适应光学和空间高对比度成像的研究。E-mail: xzhang@niaot.ac.cn

    窦江培(1981—),男,河北衡水人,博士,研究员, 博士生导师,2009年于中国科学院研究生院获得天体物理学博士学位,主要从事太阳系外行星天文高对比度直接成像技术与实测研究。E-mail: jpdou@niaot.ac.cn

  • 中图分类号: P111.3;TP391.8

Staticaberration correction technique for adaptive optics system based on focal-plane copy approach

Funds: Supported by the National Natural Science Foundation of China (No. 11827804, No. U2031210, No. 11673042); Special Scientific Research Funds for China′s Manned Space Project Sky Survey Space Telescope (No. CMS-CSST-2021-A11);Key foreign cooperation projects, the Chinese Academy of Sciences (No. 114A32KYSB20160057); The Strategic Priority Research Program (category A) of the Chinese Academy of Sciences (No. XDA15010300)
More Information
  • 摘要: 限制自适应光学(Adaptive Optics, AO)系统表现的一个关键因素是由波前传感器所在路径和科学成像路径之间差异引起的非共光路像差(Non-Common Path Aberration,NCPA),同时AO系统共光路部分也会不可避免地引入静态像差。为此,本文提出了一种基于焦面点扩散函数(Point Spread Function,PSF)复制的技术,用于校正AO系统中的静态像差。此技术利用点光源产生的PSF图像作为参考图像,通过迭代优化算法控制可变形镜改变其面型,将参考PSF图像复制到AO系统科学成像路径。实验结果表明,校正后的斯特列尔比(Strehl Ratio,SR)从初始的0.312提高到0.995。此技术可以稳定、快速地获得全局校正结果,特别是在系统具有较大的初始静态像差时。

     

  • 图 1  校正系统原理图

    Figure 1.  Block diagram of the correction system

    图 2  焦面PSF图像。(a)初始图像;(b)校正后图像;(c)参考图像

    Figure 2.  The focal-plane PSF image. (a) Initial image; (b) corrected image; (c) reference image

    图 3  评价函数曲线

    Figure 3.  Metric function curve

    图 4  校正后波前图

    Figure 4.  The corrected wavefront map

    图 5  焦面能量优化方法校正后焦面PSF图像和波前图

    Figure 5.  PSF corrected by the focal plane energy optimization method and the corresponding corrected wavefront map

    图 6  瞳面方法校正后PSF图像和波前图

    Figure 6.  PSF corrected by the pupil plane approach and the corresponding corrected wavefront map

    表  1  校正前后系统各项Zernike系数

    Table  1.   Zernike coefficients of the system before and after correction

    Zernike多项式系数校正前校正后
    Astigmatism y−0.0290.001
    Astigmatism x0.127-0.003
    Trefoil y0.0130.000
    Coma x−0.038−0.002
    Coma y−0.0350.001
    Trefoil x0.028−0.004
    Tetrafoil y0.009−0.000
    Secondary Astigmatism y−0.040−0.000
    Primary Spherical−0.0610.003
    Secondary Astigmatism x0.0350.000
    Tetrafoil x0.111−0.002
    下载: 导出CSV

    表  2  3种方法校正后Zernike系数

    Table  2.   Zernike coefficients corrected by 3 kinds of methods

    Zernike
    多项式系数
    焦面能量
    优化法
    瞳面
    校正法
    焦面
    复制技术
    Astigmatism y0.0390.0090.001
    Astigmatism x0.0030.002−0.003
    Trefoil y0.0010.0020.000
    Coma x0.007−0.002−0.002
    Coma y−0.008−0.0010.001
    Trefoil x0.0060.000−0.004
    Tetrafoil y0.0050.001−0.000
    Secondary Astigmatism y−0.0040.000−0.000
    Primary Spherical−0.0040.0010.003
    Secondary Astigmatism x−0.034−0.0010.000
    Tetrafoil x−0.0130.005−0.002
    下载: 导出CSV
  • [1] ZHU Y T, DOU J P, ZHANG X, et al. Portable adaptive optics for exoplanet imaging[J]. Research in Astronomy and Astrophysics, 2021, 21(4): 082. doi: 10.1088/1674-4527/21/4/82
    [2] KHORRAMI Z, LANGLOIS M, VAKILI F, et al. Extreme adaptive optics astrometry of R136[J]. Astronomy &Astrophysics, 2021, 649: L8.
    [3] SAHU P, MAZUMDER N. Improving the way we see: adaptive optics based optical microscopy for deep-tissue imaging[J]. Frontiers in Physics, 2021, 9: 654868. doi: 10.3389/fphy.2021.654868
    [4] 郑贤良, 刘瑞雪, 夏明亮, 等. 液晶自适应光学视网膜校正成像技术研究[J]. 中国光学,2014,7(1):98-104.

    ZHENG X L, LIU R X, XIA M L, et al. Retinal correction imaging system based on liquid crystal adaptive optics[J]. Chinese Optics, 2014, 7(1): 98-104. (in Chinese)
    [5] CHEN Y W, HE Y, WANG J, et al. Automated cone cell identification on adaptive optics scanning laser ophthalmoscope images based on TV-L1 optical flow registration and K-means clustering[J]. Applied Sciences, 2021, 11(5): 2259. doi: 10.3390/app11052259
    [6] 刘立新, 张美玲, 吴兆青, 等. 自适应光学在荧光显微镜中的应用[J]. 激光与光电子学进展,2020,57(12):120001.

    LIU L X, ZHANG M L, WU ZH Q, et al. Application of adaptive optics in fluorescence microscope[J]. Laser &Optoelectronics Progress, 2020, 57(12): 120001. (in Chinese)
    [7] MILLER D T, KUROKAWA K. Cellular-scale imaging of transparent retinal structures and processes using adaptive optics optical coherence tomography[J]. Annual Review of Vision Science, 2020, 6: 115-148. doi: 10.1146/annurev-vision-030320-041255
    [8] 朱沁雨, 韩国庆, 彭建涛, 等. 双波长视网膜成像自适应光学系统的轴向色差补偿方法[J]. 中国光学,2022,15(1):79-89. doi: 10.37188/CO.EN.2021-0009

    ZHU Q Y, HAN G Q, PENG J T, et al. Longitudinal chromatic aberration compensation method for dual-wavelength retinal imaging adaptive optics systems[J]. Chinese Optics, 2022, 15(1): 79-89. (in Chinese) doi: 10.37188/CO.EN.2021-0009
    [9] 潘国涛, 闫钰锋, 于信, 等. 矩形大口径激光光束质量评价光学系统设计[J]. 中国光学,2022,15(2):306-317. doi: 10.37188/CO.2021-0130

    PAN G T, YAN Y F, YU X, et al. Design of optical system for quality evaluation of large rectangular aperture laser beam[J]. Chinese Optics, 2022, 15(2): 306-317. (in Chinese) doi: 10.37188/CO.2021-0130
    [10] ANGEL J R P. Ground-based imaging of extrasolar planets using adaptive optics[J]. Nature, 1994, 368(6468): 203-207. doi: 10.1038/368203a0
    [11] FUSCO T, SAUVAGE J F, PETIT C, et al. Final performance and lesson-learned of SAXO, the VLT-SPHERE extreme AO: from early design to on-sky results[J]. Proceedings of SPIE, 2014, 9148: 91481U.
    [12] POYNEER L A, PALMER D W, MACINTOSH B, et al. Performance of the Gemini Planet Imager's adaptive optics system[J]. Applied Optics, 2016, 55(2): 323-340. doi: 10.1364/AO.55.000323
    [13] HIPPLER S. Adaptive optics for extremely large telescopes[J]. Journal of Astronomical Instrumentation, 2019, 8(2): 1950001. doi: 10.1142/S2251171719500016
    [14] BAUDOZ P, MAS M, GALICHER R, et al. Focal plane wavefront sensor sensitivity for ELT planet finder[J]. Proceedings of SPIE, 2010, 7736: 77365S. doi: 10.1117/12.858272
    [15] 王亮, 陈涛, 刘欣悦, 等. 适用于波前处理器的自适应光学系统非共光路像差补偿方法[J]. 光子学报,2015,44(5):0511001. doi: 10.3788/gzxb20154405.0511001

    WANG L, CHEN T, LIU X Y, et al. Compensation of the non-common path aberrations in an adaptive optics system with a wavefront processor[J]. Acta Photonica Sinica, 2015, 44(5): 0511001. (in Chinese) doi: 10.3788/gzxb20154405.0511001
    [16] REN D Q, DONG B, ZHU Y T, et al. Correction of non-common-path error for extreme adaptive optics[J]. Publications of the Astronomical Society of the Pacific, 2012, 124(913): 247-253. doi: 10.1086/664947
    [17] REN D Q, ZHANG T Y, WANG G. A low-cost and high-performance technique for adaptive optics static wavefront correction[J]. Research in Astronomy and Astrophysics, 2021, 21(7): 181. doi: 10.1088/1674-4527/21/7/181
    [18] VORONTSOV M A, CARHART G W, RICKLIN J C. Adaptive phase-distortion correction based on parallel gradient-descent optimization[J]. Optics Letters, 1997, 22(12): 907-909. doi: 10.1364/OL.22.000907
    [19] VORONTSOV M A, SIVOKON V P. Stochastic parallel-gradient-descent technique for high-resolution wave-front phase-distortion correction[J]. Journal of the Optical Society of America A, 1998, 15(10): 2745-2758. doi: 10.1364/JOSAA.15.002745
    [20] VORONTSOV M A, YU M. Compensation of distant phase-distorting layers. II. Extended-field-of-view adaptive receiver system[J]. Journal of the Optical Society of America A, 2004, 21(9): 1659-1668. doi: 10.1364/JOSAA.21.001659
  • 加载中
图(6) / 表(2)
计量
  • 文章访问数:  489
  • HTML全文浏览量:  130
  • PDF下载量:  147
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-10-27
  • 录用日期:  2022-01-21
  • 修回日期:  2021-11-17
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回