留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚偏二氟乙烯及其共聚物薄膜非线性光学研究进展

刘勇 刘卫国 牛小玲 惠迎雪 戴中华 王之恒 郭文浩

刘勇, 刘卫国, 牛小玲, 惠迎雪, 戴中华, 王之恒, 郭文浩. 聚偏二氟乙烯及其共聚物薄膜非线性光学研究进展[J]. 中国光学(中英文), 2022, 15(4): 640-659. doi: 10.37188/CO.2021-0191
引用本文: 刘勇, 刘卫国, 牛小玲, 惠迎雪, 戴中华, 王之恒, 郭文浩. 聚偏二氟乙烯及其共聚物薄膜非线性光学研究进展[J]. 中国光学(中英文), 2022, 15(4): 640-659. doi: 10.37188/CO.2021-0191
LIU Yong, LIU Wei-guo, NIU Xiao-ling, HUI Ying-xue, DAI Zhong-hua, WANG Zhi-heng, GUO Wen-hao. Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films[J]. Chinese Optics, 2022, 15(4): 640-659. doi: 10.37188/CO.2021-0191
Citation: LIU Yong, LIU Wei-guo, NIU Xiao-ling, HUI Ying-xue, DAI Zhong-hua, WANG Zhi-heng, GUO Wen-hao. Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films[J]. Chinese Optics, 2022, 15(4): 640-659. doi: 10.37188/CO.2021-0191

聚偏二氟乙烯及其共聚物薄膜非线性光学研究进展

基金项目: 国家自然科学基金(No. 52075410);陕西省教育厅科研项目专项(No. 21JY017)
详细信息
    作者简介:

    刘 勇(1980—),男,陕西榆林人,1998.9-2002.7:合肥工业大学化工学院高分子材料工程专业(本科),2006.9-2009.7:中国工程物理研究院化工材料研究所(工学硕士);2019.9-至今:西安工业大学光电工程学院光学工程专业博士在读(全日制),工程师,主要从事光学有机薄膜方面的研究。E-mail:809465892@qq.com

  • 中图分类号: TN205;O484

Research progress on nonlinear optics of polyvinylidene fluorid and its copolymers films

Funds: Supported by National Natural Science Foundation of China (No. 52075410); the Scientific Research Program of Shaanxi Provincial Education Department (No. 21JY017)
More Information
  • 摘要:

    聚偏二氟乙烯(PVDF)及其共聚物薄膜拥有极佳的电活性、较高的衍射效率、显著的非线性光学效应,广泛应用于光电转换、光调控、光开关等光电功能器件等。本文简要介绍了近年来PVDF及其共聚物薄膜非线性光学研究方面的主要进展,指出该类薄膜共混、纳米掺杂、超薄化的发展方向。同时指出需从第一性原理-光子带隙计算着手研究其非线性光学性质,以高灵敏度Z-扫描及马克条纹法结合椭偏为主要测量方式。本综述将为该类薄膜的非线性光学研究及制备提供一定的参考。

     

  • 图 1  Z-扫描技术示意图。(a)Z-扫描技术原理:Ⅰ表示高斯光进入非线性材料后的波前畸变,Ⅱ为Z-扫描实验装置,其中D1与D2为光电探测器,D2/D1比值与Z存在函数关系[20];(b)通过马克条纹技术测量二阶及三阶非线性参数示意[21];(c)质心扫描技术原理[24]

    Figure 1.  Schematic illustration of the Z-scan technique. (a) The principle of the Z-scan technique: Ⅰ-the wavefront deformation of Gaussian beam when entering nonlinear materials, Ⅱ-the Z-scan experimental apparatus in which the ratio D2/D1 is recorded as a function of the sample position Z, D1 and D2 are photodetectors[20]; (b) setup for second and third harmonic generation by means of the Maker fringe technique[21]; (c) the principle of barycentric scan technique[24]

    图 2  PVDF及其共聚物光学薄膜的分类

    Figure 2.  Classification of PVDF and its copolymers optical films

    图 3  PVDF及其共聚物光学薄膜非线性光学经典研究示意图。(a)用于二次谐波测试的PVDF 楔形薄膜的几何形状, k表示入射激光传输方向[4];(b)PVDF的LB膜红外-椭偏谱中测得的消光系数k||、k 与折射率n||、n[57];(c)通过绕垂直轴旋转平面样品获得的马克条纹,入射光为水平偏振光。上图:当入射偏振光垂直于丁香酚溶液,在67.8°入射角下的相位匹配证据,二次谐波仍为水平方向;下图:在注满丁香酚溶液的透明试管中,通过绕垂直轴旋转极化共聚物膜获得的马克条纹,入射偏振光和二次谐波均为水平方向[52];(d) 当楔形样品在平行于激光束方向上平移时获得的SHG振荡条纹图[4]

    Figure 3.  Schematic illustration of classical research on nonlinear optics of PVDF and its copolymer optical thin films. (a) Sample geometry and orientation for SHG measurements on PVDF film. The direction of the laser beam propagation corresponds to k[4]. (b) The attenuation constants k|| and k and the refractive indices n|| and n of the LB films obtained from the IR-VASE (Variable angle spectrometer ellipsometry) data analysis[57]. (c) Maker fringes obtained by rotating the planar samples around a vertical axis, with a horizontal polarization of the incident beam. Above: evidence of phase matching at an incidence angle of 67.8° in Eugenol when the incident polarization is vertical. The SHG polarization is still horizontal. Below: Maker fringes obtained by rotating the poled copolymer film around a vertical axis in a transparent cell filled with Eugenol. The incident polarization and the SHG polarization are horizontal[52]. (d) SHG fringes pattern obtained when wedge sample is translated parallel to its length across laser beam (fundamental)[4]

    图 4  PVDF/金属氧化物纳米复合薄膜的非线性光学性能。(a)PMMA/PVDF-ZnO纳米聚合物薄膜的透射率变化[78];(b)PVDF/ZnO/CuO 纳米聚合物薄膜线性吸收系数谱[81] ;(c)单一PVDF及PVDF-ZnO纳米薄膜的直接带隙[73]; (d)PVDF/ZnO纳米复合薄膜在开孔Z-扫描模式下的归一化透射率与样品位置的关系[74]

    Figure 4.  NLO properties of PVDF/metallic oxide nanocomposites films. (a) The transmittance of PMMA/PVDF-ZnO nanocomposites[78]; (b) linear absorption coefficient spectra of PVDF/ZnO/CuO nanocomposites[81]; (c) plots (direct band gap) for PVDF pristine and PVDF-ZnO Nanocomposites[73]; (d) the normalized transmittance as a function of sample position in open-aperture Z-scan for PVDF/ZnO nanocomposites [74]

    图 5  PVDF/低维碳材料薄膜的非线性光学性能。(a)不同氧化还原石墨烯浓度下的 PVDF/RGO薄膜光限制图[93];(b)单一 PVDF与 PVDF/RGO 纳米聚合物薄膜的紫外-可见光透射谱[100];(c)不同多壁碳纳米管掺杂浓度下的PVDF/多壁碳纳米管复合薄膜透明照片;(ⅰ)单一PVDF,质量分数分别为(ⅱ)1%,(ⅲ)2%,(ⅳ)5%[101]; (d)CQDs掺杂的PVDF改性薄膜在紫外辐照200 h 前后透射率对比图[104]

    Figure 5.  NLO properties of PVDF/low-dimensional carbon materials films. (a) Optical limiting graphs for PVDF/RGO films with different concentrations of RGO[93]; (b) transmittance of pristine PVDF and PVDF-RGO nanocomposites[100]; (c) transparency camera image for PVDF/MWCNT composites films[101] with different concentration of MWCNT: (ⅰ) pure PVDF, quality score is (ⅱ) 1%, (ⅲ) 2%, (ⅳ) 5%; (d) transmittance of the modified CQDs/PVDF nanocomposite films before and after 200 h of UV exposure [104]

    图 6  无机非金属晶体材料、金属盐及复合填料掺杂的PVDF薄膜非线性光学特性。(a)PVDF(TTTT)接枝在埃洛石纳米管上的构型示意[107];(b)PVDF@SiO2@S1扫描电镜图[113];(c)PVDF/埃洛石纳米管复合薄膜的归一化透射率(不同掺杂浓度下Z -扫描曲线)[107];(d)单一PVDF与PVDF/钛酸锂纳米复合薄膜的折射率变化图[111];(e)不同浓度 MoS2掺杂的PVDF薄膜直接带隙曲线[117];(f)TiO2掺杂多壁碳纳米管/PVDF 复合薄膜的傅里叶红外透射谱[123]

    Figure 6.  NLO properties of PVDF films doped with inorganic nonmetallic crystals, metallic salts, and composite fillers. (a) Schematics of TTTT(PVDF) configuration on HNTs[107]; (b) SEM micrographs of PVDF@SiO2@S1[113]; (c) transmittance of the PVDF/ HNTs films with Overlaid Z-scan curves[107]; (d) refractive index for pure PVDF and Li4Ti5O12/PVDF nanocomposites[111]; (e) direct bandgap of the MoS2 doped in PVDF nanocomposite samples[117]; (f) FTIR spectrums of TiO2@MWCNTs/PVDF composites[123]

    图 7  PVDF及其共聚物薄膜的量子化学计算。(a)Ag/PVDF复合材料1250大原子系统模拟元胞,银原子灰色,氟原子蓝色,碳原子红色,氢原子绿色[131];(b)Ag/PVDF纳米复合材料的反射率R:(i)与(ii)表示入射光沿z轴与x轴,(iii)表示真空中Ag纳米颗粒沿z轴和x轴入射[131](c)上图为非极性α相→极性γβ相的跃迁路径,下图为PVDF的α相TGTG链转变为β相的全T链时,分子链二面角变化,红色箭头表示偶极矩的方向,而黑色双箭头表示几何级数[130];(d)PVDF的折射率与(e)色散计算值,abc 分别代表光子沿abc轴的极化方向[70];(f)PVDF(九相晶体结构)折射率的理论计算值[132]

    Figure 7.  Quantum chemical calculation for PVDF and its copolymers films. (a) Snapshot of a Ag/PVDF1250 nanocomposites simulation cell. Silver atoms are shaded gray, fluorine blue, carbon red, and hydrogen green[131]; (b) the normal reflectance (R) of Ag/PVDF nanocomposites materials: (i) and (ii) are incident light along the z- and x-axes; (iii) present the respective optical properties of Ag-nanoparticles in vacuum, with incident fields along the z- and x-axes[131]; (c) the two-step transition pathway connecting the nonpolar α phase and the polar γ and β phases, the top panels show the conversion to the γ phase through a rotation of one chain, the bottom panel illustrates dihedral angle changes in the TGTG chain as it transforms to the T chain of the β phase. Red arrows indicate the directions of the dipole moments while black double arrows indicate the geometrical progression[130]; (d) calculated dispersion curves for the d-coefficients and (e) the refractive indices of PVDF. Labels a, b, and c represent the photon polarization directions along the crystal axes a, b, and c, respectively;[70] (f)theoretically calculated refractive index of PVDF[132]

    表  1  PVDF及其共聚物薄膜的光学性能相关参数

    Table  1.   Optical characteristics of PVDF and its copolymer films

    Refractive
    index
    second-harmonic
    coefficients
    Intrinsic Birefringences[51]Coherent
    wavelength
    gFibersα(Ⅱ)β(Ⅰ)γ(Ⅲ)
    a1.42[51]
    a1.425[46]
    a1.41−1.49[54]
    b1.408[71]
    b1.404−1.540[68]
    a1.99[69]
    a1.4−1.9[55]
    d33: 0.22 pm/V [52]
    d31: 0.05 pm/V[52]
    b−35 pm/V[55]
    bd33: −40 pm/V[60]
    bd33: −20±2 pm/V[60 ]
    cd33: 1.66 pm/V[70]
    cd31: 2.01 pm/V[70]
    0.0302d0.02360.0307730.00102230 μm[46]
    37 μm
    (±3 μm)[52]
    e0.02360.0307730.001022
    0.0387f0.09500.11320.0739
    c0.0082[70]
    electro-optic coefficients(EO)Elasto-optic coefficientsquadratic electro-optic coefficients
    $\left| {r_{51}^x } \right|$[50]0.10×10−12 mV−1$ \left| {\mathop \pi \nolimits_{11}^E - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop \pi \nolimits_{12}^E } \right| $[50]3.6×10−12m2N−1$ \left| {\mathop g\nolimits_{44}^x } \right| $0.02 m4C−2 [50]
    [70] 0.23×10−12 mV−121 m4C−2[59]
    $\left| {r_{42}^x } \right|$[50]0.21×10−12 mV−1$ \left| {\mathop h\nolimits_{55}^x } \right| $6.8×10−23 m2V−2[50]
    [70] 1.78×10−12 mV−14.11×10−18 m2V−2[59]
    $ \left| {\mathop r\nolimits_{13}^x - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop r\nolimits_{23}^x } \right| $[50]0.38×10−12 mV−1$ \left| {\mathop \pi \nolimits_{21}^E - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop \pi \nolimits_{22}^E } \right| $[50]1.8×10−12 m2N−1$ \left| {\mathop g\nolimits_{13}^x - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop g\nolimits_{23}^x } \right| $[50]0.01 m4C−2
    [70] 1.48×10−12 mV−1$ \left| {\mathop h\nolimits_{13}^x - \left( {{\raise0.7ex\hbox{${\mathop n\nolimits_2^3 }$} \mathord{\left/ {\vphantom {{\mathop n\nolimits_2^3 } {\mathop n\nolimits_1^3 }}}\right.} \lower0.7ex\hbox{${\mathop n\nolimits_1^3 }$}}} \right)\mathop h\nolimits_{23}^x } \right| $[59]26×10−23 m2V−2
    a: Preparation with Spin-coating; b: Preparation with LB method; c. Calculations based on the formalism of Hughes and Sipe; d: Calculations based on Bunn, Denbigh (C-C, C-H) and Denbigh (C-F); e: Calculations based on Bunn, Denbigh (C-C, C-H) and Vogel(C-F); f: Calculations based on Denbigh (C-C, C- H) and LeFevre and LeFevre (C-F). g: Birefrigence of Melt-Spun PVDF Fibers before (above) and after (below) the poled films (Clod-Drawing, Elongated-40%)
    下载: 导出CSV

    表  2  PVDF-金属氧化物纳米聚合物薄膜的线性及非线性光学相关参数

    Table  2.   Linear optical and nonlinear optical parameters of PVDF/MO (metallic oxide) nanocomposites films

    Nonlinear optical parameters
    SamplesLeffβεrn2ΔΦ0Ed (eV)Ei (eV)Ea(eV)|χ(3)|
    P/ZnO [81]1.051[81]
    0.2339~0.30405[73]
    1.942[81]
    17.58~2.064[73]
    3.15~4.91[81]−1.624[81]
    −4.562~
    12.22[73]
    0.181[81]
    0.147~
    0.29[74]
    5.57~4.95[73]
    3.24[81]
    4.76~3.35[73]1.16[73]0.7145[73]
    P/ZnO/CuO [81]0.8624.740−3.2200.2941.4039
    Samplesβ'εrnpEd (eV)Ef (eV)
    P/ZrO2[69]3396.8~26.103.97~5.831.99~2.411.62~7.271.53~5.892.94~0.760.34~9.29
    Linear optical parameters
    SamplesεrnkSamplesTεr
    P/CrO2[83]2.77−5.831.395~1.430.005~0.03P/Gd2O3: Eu3+[89]82%~85%7~7.5
    P/PPO/POPOPGd2O3:Eu3+[89]75%~77%12~15
    Samples[82]αεrEd (eV)Samples[76]αEd (eV)Ei (eV)
    P/PEO-Al2O30.993.56~6.354.91P/PMMA-V-ZnO0.88~0.60[78]2.82.5
    P/PEO-SnO20.992.7~4.684.62P/PMMA-S-ZnO0.82~0.60[78]3.02.8
    P/PEO-TiO20.9823.08~5.053.53P/PMMA-Dy-ZnO0.78~0.60[78]2.52.2
    SamplesαnEd (eV)Ei (eV)k(10−2)Tεr
    P/PMMA-ZnO [78]0.975~0.602 [78]
    0.83~0.40[76]
    1.29~1.54[78]5.22~5.75[78]
    2.9[76]
    2.6[78]0.018~0.06[78]35%~40%[78]2.37~1.67[78]
    P/PMMA [78]0.44[78]
    0.50~0.35[76]
    1.21~1.22[78]5.85[78]
    4.4[76]
    3.7[76]0.01[76]65%~70%[76]1.46[76]
    SamplesαεrEd (eV)Ea(eV)Samplesα
    La2O3/P-TrFE[85]0.968~0.9961633.15~2.8010.20~0.15;20.84~0.41P/Nd2O3[88]0.90
    Fe3O4/P-HFP[87]0.90
    Note:P-PVDF, 1- ac activation energy (Eac), 2-dc activation energy (Edc), Ed-Direct band gap, Ei-Indirect optical band gap, n-linear refractive index (λ≈633 nm), Ea-optical activation energy, Ef-Fermi energy, n2-nonlinear refractive index (cm2/W×10−13), β-nonlinear absorption coefficient (two-photon, cm/W×10−8), α-linear absorption coefficient, transmittance, εr-dielectric constant, χ(3)-third order nonlinear optical susceptibility(10-6esu), Leff-effective length of the sample(10−3 cm), ΔΦ0-the nonlinear phase shift, k-the extenction coeffecient (λ≈633 nm), p-average polarizability (C2 m2J−1×10−39), β′-first hyperpolarizability(C3 m3J−2×10−51), -anisotropy (C2 m2J−1×10−39), V-ZnO: ZnO doped with vanadium, S- ZnO: ZnO doped with sulfur, Dy-ZnO:ZnO doped with dysprosium.
    下载: 导出CSV

    表  3  PVDF/低维碳材料纳米聚合物薄膜的线性及非线性光学相关参数

    Table  3.   Linear optical and nonlinear optical parameters of PVDF/low-dimensional carbon materials nanocomposites films

    Nonlinear optical parameters
    samplesβn2PthImχ(3)|χ(3)|
    P/RGO[99]195−4003.410−6.2708.4−7.846.19−12.956.2−12.96
    Linear optical parameters
    samplesαnEd (eV)Ei (eV)T
    P/RGO[100]83%−99%1.8−2.25−4.34.4−3.230%−1%
    PVDF/CQDs[105]90%−98.5%1.22−1.552.96−5.001.16−4.324%−12%
    samplesT
    P-OH@CQDs/PVA [104]88%(300−800 nm)
    PVDF/MWCNT[101]0(5%CNT)、22%(2%CNT)、48%(1%CNT)
    Note:P-PVDF, Ed-direct band gap, Ei-indirect optical band gap, n-linear refractive index (λ≈633 nm), n2-nonlinear refractive index (cm2/W×10−10), β-Nonlinear absorption coefficient (two-photon, cm/GW), α-linear absorption coefficient, T-transmittance (λ≈633 nm), χ(3): third-order nonlinear optical susceptibility (10−11 esu), Imχ(3); The imaginary part of third-order nonlinear optical susceptibility (10−11 esu), Pth-optical limiting threshold power (MW/cm2).
    下载: 导出CSV

    表  4  PVDF/无机非金属晶体材料聚合物薄膜的线性及非线性光学相关参数

    Table  4.   Linear optical and nonlinear optical parameters of PVDF/inorganic nonmetallic crystalline materials nanocomposites films

    Nonlinear optical parameters
    samplesΔφ0Leffn2χ3
    Pristine PVDF[107]2.0524.3−3.13−1.7872
    P/HNT[107]0.59−2.213.9−20.41.24−4.891.2075−8.9922
    samplesnλ0(nm)S0εN/m*ωp
    Li4Ti5O12[111]2.78213.621.478.150.4724.09
    P/Li4Ti5O12[111]3.50−7.32269.68−291.601.55−6.1915.64−74.833.684−35.608.25−11.67
    Linear optical parameters
    SamplesαEi (eV)
    200 nm<λ<400 nm400 nm<λ<800 nm
    BaTiO3[110]0.990.6843.6
    (0.8)PVDF/(0.2)BaTiO3[110]0.9990.9972.9
    0.6PVDF/0.4BaTiO3[110]0.9990.9992.4
    1PVDF/5BaTiO3[109]0.9−0.50.2−0.53.85−3.3
    Note:P-PVDF, Ed−Direct band gap, Ei−Indirect optical band gap, n-Linear refractive index (λ≈633 nm), n2− nonlinear refractive index (cm2/W×10−12), T-transmittance (λ≈633 nm), χ(3): third-order nonlinear optical susceptibility (10−8esu), α-linear absorption coefficient, Pth−optical limiting threshold power (MW/cm2), Leff: the effective length (μm); Δφ0: the on-axis nonlinear phase shift at the focus; n: the long wavelength refractive index, λ0: the average oscillator wavelength, S0: average oscillator strength (1014 m−2), ε: high-frequency dielectric constant, N/m*: free carriers ratio (×1057 m−3), ωp: the plasma frequency (1014 s−1), n-Linear refractive index (λ≈633nm), k-the extension coefficient (10−3, 220 nm<λ<380 nm).
    下载: 导出CSV
  • [1] 钟维烈. 铁电体物理学[M]. 北京: 科学出版社, 1996.

    ZHONG W L. The Physics of Ferroelectrics[M]. Beijing: Press of Science, 1996. (in Chinese)
    [2] LOVINGER A J. Annealing of poly(vinylidene fluoride) and formation of a fifth phase[J]. Macromolecules, 1982, 15(1): 40-44. doi: 10.1021/ma00229a008
    [3] KEPLER R G, ANDERSON R A. Ferroelectric polymers[J]. Advances in Physics, 1992, 41(1): 1-57. doi: 10.1080/00018739200101463
    [4] MCFEE J H, BERGMAN J G, CRANE G R. Pyroelectric and nonlinear optical properties of poled polyvinylidene fluoride films[J]. IEEE Transactions on Sonics and Ultrasonics, 1972, 19(2): 305-314. doi: 10.1109/T-SU.1972.29675
    [5] SINGER K D, LALAMA S J, SOHN J E. Organic nonlinear optical materials[J]. Proceedings of SPIE, 1985, 578: 130-136. doi: 10.1117/12.950759
    [6] RUAN L X, YAO X N, CHANG Y F, et al. Properties and applications of the β phase poly(vinylidene fluoride)[J]. Polymers, 2018, 10(3): 228. doi: 10.3390/polym10030228
    [7] RIBEIRO C, COSTA C M, CORREIA D M, et al. Electroactive poly(vinylidene fluoride)-based structures for advanced applications[J]. Nature Protocols, 2018, 13(4): 681-704. doi: 10.1038/nprot.2017.157
    [8] 张淑婷, 安琪. 高性能聚偏氟乙烯基柔性压电材料的设计策略进展[J]. 高等学校化学学报,2021,42(4):1114-1145. doi: 10.7503/cjcu20200636

    ZHANG SH T, AN Q. Progress on the design and fabrication of high performance piezoelectric flexible materials based on polyvinylidene fluoride[J]. Chemical Journal of Chinese Universities, 2021, 42(4): 1114-1145. (in Chinese) doi: 10.7503/cjcu20200636
    [9] WANG H, CHEN Q S, XIA W, et al. Electroactive PVDF thin films fabricated via cooperative stretching process[J]. Journal of Applied Polymer Science, 2018, 135(22): 46324. doi: 10.1002/app.46324
    [10] SCHNABEL W. Polymers and Light: Fundamentals and Technical Applications[M]. Weinheim: Wiley-VCH, 2007.
    [11] 布洛姆伯根 N. 非线性光学[M]. 吴存恺, 沈文达, 沃新能, 译. 北京: 科学出版社, 1987.

    BLOEMBERGEN N. Nonlinear Optics[M]. WU C K, SHEN W D, WO X N, trans. Beijing: Science Press, 1987. (in Chinese)
    [12] 张志刚, 吴洪才, 高潮. 非线性光学有机聚合物材料研究进展[J]. 化工新型材料,2003,31(12):6-9. doi: 10.3969/j.issn.1006-3536.2003.12.002

    ZHANG ZH G, WU H C, GAO CH. Research progress on nonlinear optical organic polymers[J]. New Chemical Materials, 2003, 31(12): 6-9. (in Chinese) doi: 10.3969/j.issn.1006-3536.2003.12.002
    [13] 霍福杨, 陈卓, 薄淑晖. 有机二阶非线性光学聚合物的研究进展[J]. 功能高分子学报,2020,33(2):108-124.

    HUO F Y, CHEN ZH, BO SH H. Advances in organic second-order nonlinear optical polymers[J]. Journal of Functional Polymers, 2020, 33(2): 108-124. (in Chinese)
    [14] 黄发荣, 李世瑨. 聚合物的非线性光学研究-原理及材料[J]. 化工进展,1994(3):16-22.

    HUANG F R, LI SH J. Nonlinear optical researches on polymers-principles and materials[J]. Chemical Industry and Engineering Progress, 1994(3): 16-22. (in Chinese)
    [15] 郑立新, 王德利, 陈天禄, 等. 二阶非线性光学极化聚合物[J]. 高分子通报,1994(3):152-155.

    ZHENG L X, WANG D L, CHEN T L, et al. Poled polymer for second-order nonlinear optics[J]. Polymer Bulletin, 1994(3): 152-155. (in Chinese)
    [16] 罗敬东, 詹才茂, 秦金贵. 极化聚合物电光材料研究进展[J]. 高分子通报,2000(1):9-19. doi: 10.3969/j.issn.1003-3726.2000.01.002

    LUO J D, ZHAN C M, QIN J G. Progress of poled polymeric electro-optic materials[J]. Polymer Bulletin, 2000(1): 9-19. (in Chinese) doi: 10.3969/j.issn.1003-3726.2000.01.002
    [17] 任力, 毛名飞, 侯有军, 等. 聚酰亚胺基二阶非线性光学材料的研究进展[J]. 材料科学与工程,2002,20(1):84-88.

    REN L, MAO M F, HOU Y J, et al. Progress on polyimide-based second-order nonlinear optical materials[J]. Materials Science &Engineering, 2002, 20(1): 84-88. (in Chinese)
    [18] ALLEN N S. Photochemistry and Photophysics of Polymer Materials[M]. Hoboken: J. Wiley, 2010.
    [19] LIU J L, OUYANG C B, HUO F Y, et al. Progress in the enhancement of electro-optic coefficients and orientation stability for organic second-order nonlinear optical materials[J]. Dyes and Pigments, 2020, 181: 108509. doi: 10.1016/j.dyepig.2020.108509
    [20] 余力, 陈谋智, 黄美纯, 等. 测量光学非线性的Z扫描方法[J]. 量子电子学报,1998,15(5):433-440.

    YU L, CHEN M ZH, HUANG M CH, et al. Measurements of optical nonlinearity by Z-scan[J]. Chinese Journal of Quantum Electronics, 1998, 15(5): 433-440. (in Chinese)
    [21] BUBECK C. Measurement of nonlinear optical susceptibilities[M]//ZERBI G. Organic Materials for Photonics: Science and Technology. Amsterdam: Elsevier, 1993: 215-232.
    [22] 祁胜文, 杨秀琴, 陈宽, 等. Z-扫描技术与非线性光学材料性质的测量[J]. 物理实验,2003,23(12):14-19. doi: 10.3969/j.issn.1005-4642.2003.12.004

    QI SH W, YANG X Q, CHEN K, et al. Z-scan technique and measurement of nonlinear optical material properties[J]. Physics Experimentation, 2003, 23(12): 14-19. (in Chinese) doi: 10.3969/j.issn.1005-4642.2003.12.004
    [23] 李中国, 宋瑛林. 三阶非线性光学测量技术研究进展[J]. 黑龙江大学自然科学学报,2016,33(1):75-81.

    LI ZH G, SONG Y L. Advancement of third-order nonlinear optical measurement technique[J]. Journal of Natural Science of Heilongjiang University, 2016, 33(1): 75-81. (in Chinese)
    [24] GODIN T, FROMAGER M, CAGNIOT E, et al. Baryscan: a sensitive and user-friendly alternative to Z scan for weak nonlinearities measurements[J]. Optics Letters, 2011, 36(8): 1401-1403. doi: 10.1364/OL.36.001401
    [25] KOLKOWSKI R, SAMOC M. Modified Z-scan technique using focus-tunable lens[J]. Journal of Optics, 2014, 16(12): 125202. doi: 10.1088/2040-8978/16/12/125202
    [26] DOLL W W, LANDO J B. Polymorphism of poly(vinylidene fluoride). III. The crystal structure of phase II[J]. Journal of Macromolecular Science,Part B, 1970, 4(2): 309-329. doi: 10.1080/00222347008212505
    [27] 牛小玲, 刘鹏, 刘卫国, 等. PMMA/PVDF共混对PVDF的β相构型影响的研究[J]. 高分子通报,2010(3):31-34.

    NIU X L, LIU P, LIU W G, et al. Study on β-phase crystal formation of poly(vinylidene difluoride) in poly(methyl methacrylate)/poly (vinylidene difluoride) blends[J]. Polymer Bulletin, 2010(3): 31-34. (in Chinese)
    [28] KARASAWA N, GODDARD III W A. Force fields, structures, and properties of poly(vinylidene fluoride) crystals[J]. Macromolecules, 1992, 25(26): 7268-7281. doi: 10.1021/ma00052a031
    [29] FUKADA E. Mechanical deformation and electrical polarization in biological substances[J]. Biorheology, 1968, 5(3): 199-208. doi: 10.3233/BIR-1968-5302
    [30] KAWAI H. The piezoelectricity of poly (vinylidene fluoride)[J]. Japanese Journal of Applied Physics, 1969, 8(7): 975-976. doi: 10.1143/JJAP.8.975
    [31] HASEGAWA R, TANABE Y, KOBAYASHI M, et al. Structural studies of pressure-crystallized polymers. I. Heat treatment of oriented polymers under high pressure[J]. Journal of Polymer Science Part A-2:Polymer Physics, 1970, 8(7): 1073-1087. doi: 10.1002/pol.1970.160080705
    [32] HASEGAWA R, KOBAYASHI M, TADOKORO H. Molecular conformation and packing of poly(vinylidene fluoride). stability of three crystalline forms and the effect of high pressure[J]. Polymer Journal, 1972, 3(5): 591-599. doi: 10.1295/polymj.3.591
    [33] KOBAYASHI M, TASHIRO K, TADOKORO H. Molecular vibrations of three crystal forms of poly(vinylidene fluoride)[J]. Macromolecules, 1975, 8(2): 158-171. doi: 10.1021/ma60044a013
    [34] NAEGELE D, YOON D Y, BROADHURST M G. Formation of a new crystal form (αp) of poly(vinylidene fluoride) under electric field[J]. Macromolecules, 1978, 11(6): 1297-1298. doi: 10.1021/ma60066a051
    [35] YANG D C, CHEN Y. β-formation of poly(vinylidene fluoride) from the melt induced by quenching[J]. Journal of Materials Science Letters, 1987, 6(5): 599-603. doi: 10.1007/BF01739296
    [36] SAJKIEWICZ P, WASIAK A, GOCŁOWSKI Z. Phase transitions during stretching of poly(vinylidene fluoride)[J]. European Polymer Journal, 1999, 35(3): 423-429. doi: 10.1016/S0014-3057(98)00136-0
    [37] GARCÍA-ZALDÍVAR O, ESCAMILLA-DÍAZ T, RAMÍREZ-CARDONA M, et al. Ferroelectric-paraelectric transition in a membrane with quenched-induced δ-phase Of PVDF[J]. Scientific Reports, 2017, 7(1): 5566. doi: 10.1038/s41598-017-06044-y
    [38] MATSUSHIGE K, NAGATA K, IMADA S, et al. The II-I crystal transformation of poly(vinylidene fluoride) under tensile and compressional stresses[J]. Polymer, 1980, 21(12): 1391-1397. doi: 10.1016/0032-3861(80)90138-X
    [39] NAKAMURA K, NAGAI M, KANAMOTO T, et al. Development of oriented structure and properties on drawing of poly(vinylidene fluoride) by solid-state coextrusion[J]. Journal of Polymer Science Part B:Polymer Physics, 2001, 39(12): 1371-1380. doi: 10.1002/polb.1109
    [40] WEINHOLD S, LITT M, LANDO J B. The effect of crystallite orientation on the electric field induced α to δ crystal phase transition in poly(vinylidene fluoride)[J]. Ferroelectrics, 1984, 57(1): 277-296. doi: 10.1080/00150198408012769
    [41] 陈晔, 杨德才. 聚偏氟乙烯/聚甲基丙烯酸甲酯共混物高取向薄膜的形态结构研究-Ⅱ、退火和形变对晶相转变的影响[J]. 高分子材料科学与工程,1988(6):32-38. doi: 10.3321/j.issn:1000-7555.1988.06.004

    CHEN Y, YANG D C. Studies on morphology of highly oriented FHMS of PVF2/PMMA blends Ⅱ. The effects of annealing and deform Aton on phase Transitton of oriented PVF2[J]. Polymeric Materials Science &Engineering, 1988(6): 32-38. (in Chinese) doi: 10.3321/j.issn:1000-7555.1988.06.004
    [42] MAHADEVA S K, BERRING J, WALUS K, et al. Effect of poling time and grid voltage on phase transition and piezoelectricity of poly(vinyledene fluoride) thin films using corona poling[J]. Journal of Physics D:Applied Physics, 2013, 46(28): 285305. doi: 10.1088/0022-3727/46/28/285305
    [43] HSU S L, LU F J, WALDMAN D A, et al. Analysis of the crystalline phase transformation of poly(vinylidene fluoride)[J]. Macromolecules, 1985, 18(12): 2583-2587. doi: 10.1021/ma00154a038
    [44] NAEGELE D, YOON D Y. Orientation of crystalline dipoles in poly(vinylidene fluoride) films under electric field[J]. Applied Physics Letters, 1978, 33(2): 132-134. doi: 10.1063/1.90281
    [45] HATTORI T, KANAOKA M, OHIGASHI H. Improved piezoelectricity in thick lamellar β-form crystals of poly(vinylidene fluoride) crystallized under high pressure[J]. Journal of Applied Physics, 1996, 79(4): 2016-2022. doi: 10.1063/1.361055
    [46] BERGMAN J G JR, MCFEE J H, CRANE G R. Pyroelectricity and optical second harmonic generation in polyvinylidene fluoride films[J]. Applied Physics Letters, 1971, 18(5): 203-205. doi: 10.1063/1.1653624
    [47] GOOKIN D, MORRIS R. Electro-optic hysteresis in polyvinylidene fluoride[J]. Applied Physics Letters, 1984, 45(6): 603-604. doi: 10.1063/1.95324
    [48] AKTSIPETROV O A, MISURYAEV T V, MURZINA T V, et al. Optical second-harmonic-generation probe of two-dimensional ferroelectricity[J]. Optics Letters, 2000, 25(6): 411-413. doi: 10.1364/OL.25.000411
    [49] AKTSIPETROV O A, BLINOV L M, FRIDKIN V M, et al. Two-dimensional ferroelectricity and second harmonic generation in PVDF Langmuir-Blodgett films[J]. Surface Science, 2000, 454-456: 1016-1020. doi: 10.1016/S0039-6028(00)00271-5
    [50] BROUSSOUX D, MICHERON F. Electro‐optic and elasto‐optic effects in polyvinylidene fluoride[J]. Journal of Applied Physics, 1980, 51(4): 2020-2023. doi: 10.1063/1.327920
    [51] CAKMAK M, WANG Y M. The intrinsic birefringence of the α, β, and γ forms of polyvinylidene fluoride and the estimation of orientation in fibers and films[J]. Journal of Applied Polymer Science, 1989, 37(4): 977-985. doi: 10.1002/app.1989.070370411
    [52] BERGE B, WICKER A, LAJZEROWICZ J, et al. Second-harmonic generation of light and evidence of phase matching in thin films of P(VDF-TrFE) copolymers[J]. Europhysics Letters, 1989, 9(7): 657-662. doi: 10.1209/0295-5075/9/7/008
    [53] WICKER A, BERGE B, LAJZEROWICZ J, et al. Nonlinear optical investigation of the bulk ferroelectric polarization in a vinylidene fluoride/trifluoroethylene copolymer[J]. Journal of Applied Physics, 1989, 66(1): 342-349. doi: 10.1063/1.344471
    [54] BEN-DAVID M, ENGEL L, SHACHAM-DIAMAND Y. Spectroscopic ellipsometry study of spin coated P(VDF-TrFE-CTFE) thin films and P(VDF-TrFE-CTFE)/PMMA blends[J]. Microelectronic Engineering, 2017, 171: 37-43. doi: 10.1016/j.mee.2017.01.030
    [55] MILES M J. Gelation[M]//BASSETT D C. Developments in Crystalline Polymers. Dordrecht: Springer, 1988: 233-295.
    [56] BAUER S. Nonlinear optics with inhomogeneously poled polymers[M]//EHRFELD W, WEGNER G, KARTHE W, et al. . Integrated Optics and Micro-Optics with Polymers. Wiesbaden: Vieweg+Teubner Verlag, 1993,doi: 10.1007/978-3-322-93430-7_3.
    [57] BAI M J, POULSEN M, SOROKIN A V, et al. Infrared spectroscopic ellipsometry study of vinylidene fluoride (70%)-trifluoroethylene (30%) copolymer Langmuir-Blodgett films[J]. Journal of Applied Physics, 2003, 94(1): 195-200. doi: 10.1063/1.1578697
    [58] BAI M J, SOROKIN A V, THOMPSON D W, et al. Determination of the optical dispersion in ferroelectric vinylidene fluoride (70%)/trifluoroethylene (30%) copolymer Langmuir-Blodgett films[J]. Journal of Applied Physics, 2004, 95(7): 3372-3377. doi: 10.1063/1.1649464
    [59] JEONG D Y, WANG Y K, HUANG M, et al. Electro-optical response of the ferroelectric relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene) terpolymer[J]. Journal of Applied Physics, 2004, 96(1): 316-319. doi: 10.1063/1.1757032
    [60] BUNE A V, ZHU CH X, DUCHARME S, et al. Piezoelectric and pyroelectric properties of ferroelectric Langmuir-Blodgett polymer films[J]. Journal of Applied Physics, 1999, 85(11): 7869-7873. doi: 10.1063/1.370598
    [61] KEPLER R G, ANDERSON R A. Piezoelectricity and pyroelectricity in polyvinylidene fluoride[J]. Journal of Applied Physics, 1978, 49(8): 4490-4494. doi: 10.1063/1.325454
    [62] MENG Q J, LI W J, ZHENG Y S, et al. Effect of poly(methyl methacrylate) addition on the dielectric and energy storage properties of poly(vinylidene fluoride)[J]. Journal of Applied Polymer Science, 2010, 116(5): 2674-2684.
    [63] ZHAO X J, PENG G R, ZHAN Z J, et al. Structure change and energy storage property of poly(vinylidene fluoride-hexafluoropropylene)/poly (methyl methacrylate) blends[J]. Polymer Science Series A, 2015, 57(4): 452-459. doi: 10.1134/S0965545X15040173
    [64] SHAO Y, YANG Z X, DENG B W, et al. Tuning PVDF/PS/HDPE polymer blends to tri-continuous morphology by grafted copolymers as the compatibilizers[J]. Polymer, 2018, 140: 188-197. doi: 10.1016/j.polymer.2018.02.055
    [65] BERKOVIC G, KRONGAUZ V, YITZCHAIK S. Nonlinear optics in poled polymers with two-dimensional asymmetry[J]. Proceedings of SPIE, 1991, 1442: 44-52. doi: 10.1117/12.49043
    [66] FRIDKIN V M, DUCHARME S, BUNE A V, et al. Two-dimensional ferroelectrics[J]. Ferroelectrics, 2000, 236(1): 1-10. doi: 10.1080/00150190008016036
    [67] 何平笙. 二维状态下的聚合[M]. 合肥: 中国科学技术大学出版社, 2008.

    HE P SH. Polymerization in Two-Dimensional State[M]. Hefei: Press of University of Science and Technology of China, 2008. (in Chinese)
    [68] PALTO S, BLINOV L, BUNE A, et al. Ferroelectric langmuir-blodgett films[J]. Ferroelectrics Letters Section, 1995, 19(3-4): 65-68. doi: 10.1080/07315179508204276
    [69] VEVED A, EJUH G W, DJONGYANG N. Study of the optoelectronic and piezoelectric properties of ZrO2 doped PVDF from quantum chemistry calculations[J]. Chinese Journal of Physics, 2020, 63: 213-219. doi: 10.1016/j.cjph.2019.10.022
    [70] DUAN CH G, MEI W N, YIN W G, et al. Theoretical study on the optical properties of polyvinylidene fluoride crystal[J]. Journal of Physics:Condensed Matter, 2003, 15(22): 3805-3811. doi: 10.1088/0953-8984/15/22/314
    [71] WANG J L, GAO Y Q, HUANG Z M, et al. The optical dispersion of langmuir-blodgett terpolymer films[J]. Ferroelectrics, 2010, 405(1): 120-125. doi: 10.1080/00150193.2010.483189
    [72] 宋词, 杭寅, 徐军. 氧化锌晶体的研究进展[J]. 人工晶体学报,2004,33(1):81-87. doi: 10.3969/j.issn.1000-985X.2004.01.018

    SONG C, HANG Y, XU J. Research progress of ZnO single crystal[J]. Journal of Synthetic Crystals, 2004, 33(1): 81-87. (in Chinese) doi: 10.3969/j.issn.1000-985X.2004.01.018
    [73] INDOLIA A P, GAUR M S. Optical properties of solution grown PVDF-ZnO nanocomposite thin films[J]. Journal of Polymer Research, 2013, 20(1): 43. doi: 10.1007/s10965-012-0043-y
    [74] SHANSHOOL H M, YAHAYA M, YUNUS W M M, et al. Measurements of nonlinear optical properties of PVDF/ZnO using Z-scan technique[J]. Brazilian Journal of Physics, 2015, 45(5): 538-544. doi: 10.1007/s13538-015-0345-8
    [75] SHANSHOOL H M, YAHAYA M, YUNUS W M M, et al. Polymer-ZnO nanocomposites foils and thin films for UV protection[J]. AIP Conference Proceedings, 2014, 1614(1): 136-141.
    [76] SINGH N, MADHAV H, YADAV S, et al. Impact of vanadium-, sulfur-, and dysprosium-doped zinc oxide nanoparticles on various properties of PVDF/functionalized-PMMA blend nanocomposites: structural, optical, and morphological studies[J]. Journal of Applied Polymer Science, 2019, 136(9): 47116. doi: 10.1002/app.47116
    [77] GAABOUR L H, HAMAM K A. The change of structural, optical and thermal properties of a PVDF/PVC blend containing ZnO nanoparticles[J]. Silicon, 2018, 10(4): 1403-1409. doi: 10.1007/s12633-017-9617-y
    [78] MOHAMMED M I. Optical properties of ZnO nanoparticles dispersed in PMMA/PVDF blend[J]. Journal of Molecular Structure, 2018, 1169: 9-17. doi: 10.1016/j.molstruc.2018.05.024
    [79] ANDO M, KADONO K, HARUTA M, et al. Large third-order optical nonlinearities in transition-metal oxides[J]. Nature, 1995, 374(6523): 625-627. doi: 10.1038/374625a0
    [80] CHEN A P, YANG G, LONG H, et al. Nonlinear optical properties of laser deposited CuO thin films[J]. Thin Solid Films, 2009, 517(15): 4277-4280. doi: 10.1016/j.tsf.2008.11.139
    [81] SHANSHOOL H M, YAHAYA M, YUNUS W M M, et al. Influence of CuO nanoparticles on third order nonlinearity and optical limiting threshold of polymer/ZnO nanocomposites[J]. Optical and Quantum Electronics, 2017, 49(1): 18. doi: 10.1007/s11082-016-0830-5
    [82] SENGWA R J, DHATARWAL P, CHOUDHARY S. A comparative study of different metal oxide nanoparticles dispersed PVDF/PEO blend matrix-based advanced multifunctional nanodielectrics for flexible electronic devices[J]. Materials Today Communications, 2020, 25: 101380. doi: 10.1016/j.mtcomm.2020.101380
    [83] AL-HAZMI F S, DE LEEUW D M, AL-GHAMDI A A, et al. Evaluation of the spectroscopic ellipsometry and dielectric properties of Cr2O3 nanoparticles doped PVDF thin films for future application of organic ferroelectric junctions[J]. Optik, 2017, 138: 207-213. doi: 10.1016/j.ijleo.2017.03.073
    [84] VEVED A, EJUH G W, DJONGYANG N. Effect of HfO2 on the dielectric, optoelectronic and energy harvesting properties of PVDF[J]. Optical and Quantum Electronics, 2019, 51(10): 330. doi: 10.1007/s11082-019-2042-2
    [85] ALOMARI A, BATRA A K, ARUN K J. Optical and electronic characterization of P(VDF-TrFE)/La2O3 nanocomposite films[J]. Optik, 2016, 127(22): 10335-10342. doi: 10.1016/j.ijleo.2016.08.050
    [86] CHIPARA D, KUNCSER V, LOZANO K, et al. Spectroscopic investigations on PVDF-Fe2O3 nanocomposites[J]. Journal of Applied Polymer Science, 2020, 137(30): 48907. doi: 10.1002/app.48907
    [87] LI W P, CHEN Y Q, YAO L, et al. Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation[J]. Desalination, 2020, 478: 114288. doi: 10.1016/j.desal.2019.114288
    [88] AGUIAR L W, BOTERO E R, CARVALHO C T, et al. Study of the changes in the polar phase and optical properties of poly (vinylidene fluoride) matrix by neodymium compound addition[J]. Materials Today Communications, 2020, 25: 101274. doi: 10.1016/j.mtcomm.2020.101274
    [89] OLIVEIRA J, MARTINS P M, MARTINS P, et al. Increasing X-ray to visible transduction performance of Gd2O3: Eu3+PVDF composites by PPO/POPOP addition[J]. Composites Part B:Engineering, 2016, 91: 610-614. doi: 10.1016/j.compositesb.2016.02.017
    [90] GUO W L, YIN J, QIU H, et al. Friction of low-dimensional nanomaterial systems[J]. Friction, 2014, 2(3): 209-225. doi: 10.1007/s40544-014-0064-0
    [91] KÜRÜM U, EKIZ O Ö, YAGLIOGLU H G, et al. Electrochemically tunable ultrafast optical response of graphene oxide[J]. Applied Physics Letters, 2011, 98(14): 141103. doi: 10.1063/1.3573797
    [92] ZHANG H, VIRALLY S, BAO Q L, et al. Z-scan measurement of the nonlinear refractive index of graphene[J]. Optics Letters, 2012, 37(11): 1856-1858. doi: 10.1364/OL.37.001856
    [93] 李文治. 碳纳米管的研究进展[J]. 光学与光电技术,2016,14(5):10-15.

    LI W ZH. Research progress of carbon nanotubes[J]. Optics &Optoelectronic Technology, 2016, 14(5): 10-15. (in Chinese)
    [94] 李婷, 唐吉龙, 方芳, 等. 碳量子点的合成、性质及其应用[J]. 功能材料,2015,46(9):9012-9018,9025.

    LI T, TANG J L, FANG F, et al. Carbon quantum dots: synthesis, properties and applications[J]. Journal of Functional Materials, 2015, 46(9): 9012-9018,9025. (in Chinese)
    [95] HUANG W W, EDENZON K, FERNANDEZ L, et al. Nanocomposites of poly(vinylidene fluoride) with multiwalled carbon nanotubes[J]. Journal of Applied Polymer Science, 2010, 115(6): 3238-3248. doi: 10.1002/app.31393
    [96] LIM Y, LEE S. Phase transition and improvement of output efficiency of the PZT/PVDF Piezoelectric device by adding carbon nanotubes[J]. Journal of the Korean Institute of Electrical and Electronic Material Engineers, 2018, 31(2): 94-97.
    [97] PRATIHAR S, PATRA A, SASMAL A, et al. Enhanced dielectric, ferroelectric, energy storage and mechanical energy harvesting performance of ZnO-PVDF composites induced by MWCNTs as an additive third phase[J]. Soft Matter, 2021, 17(37): 8483-8495. doi: 10.1039/D1SM00854D
    [98] BEGUM S, ULLAH H, AHMED I, et al. Investigation of morphology, crystallinity, thermal stability, piezoelectricity and conductivity of PVDF nanocomposites reinforced with epoxy functionalized MWCNTs[J]. Composites Science and Technology, 2021, 211: 108841. doi: 10.1016/j.compscitech.2021.108841
    [99] SABIRA K, SAHEEDA P, DIVYASREE M C, et al. Impressive nonlinear optical response exhibited by Poly(vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films[J]. Optics &Laser Technology, 2017, 97: 77-83.
    [100] ISMAIL A M, MOHAMMED M I, FOUAD S S. Optical and structural properties of polyvinylidene fluoride (PVDF)/reduced graphene oxide (RGO) nanocomposites[J]. Journal of Molecular Structure, 2018, 1170: 51-59. doi: 10.1016/j.molstruc.2018.05.083
    [101] RAM R, RAHAMAN M, KHASTGIR D. Electrical properties of polyvinylidene fluoride (PVDF)/multi-walled carbon nanotube (MWCNT) semi-transparent composites: modelling of DC conductivity[J]. Composites Part A:Applied Science and Manufacturing, 2015, 69: 30-39. doi: 10.1016/j.compositesa.2014.11.003
    [102] BAIBARAC M, DAESCU M, MATEI E, et al. Optical properties of composites based on poly(o-phenylenediamine), poly(vinylenefluoride) and double-wall carbon nanotubes[J]. International Journal of Molecular Sciences, 2021, 22(15): 8260. doi: 10.3390/ijms22158260
    [103] VERKHOVSKAYA K A, CHUMAKOVA S P, SAVELEV V V, et al. The photorefractive and photovoltaic properties of a composite based on ferroelectric polymer doped with carbon nanotubes[J]. Crystallography Reports, 2018, 63(5): 802-805. doi: 10.1134/S1063774518050309
    [104] DONG L, XIONG ZH R, LIU X D, et al. Synthesis of carbon quantum dots to fabricate ultraviolet‐shielding poly(vinylidene fluoride) films[J]. Journal of Applied Polymer Science, 2019, 136(25): 47555. doi: 10.1002/app.47555
    [105] BADAWI A, ALHARTHI S S, MOSTAFA N Y, et al. Effect of carbon quantum dots on the optical and electrical properties of polyvinylidene fluoride polymer for optoelectronic applications[J]. Applied Physics A, 2019, 125(12): 858. doi: 10.1007/s00339-019-3160-1
    [106] BODKHE S, RAJESH P S M, KAMLE S, et al. Beta-phase enhancement in polyvinylidene fluoride through filler addition: comparing cellulose with carbon nanotubes and clay[J]. Journal of Polymer Research, 2014, 21(5): 434. doi: 10.1007/s10965-014-0434-3
    [107] VISWANATH P, RAMBHATLA P V, KIRAN P S, et al. Third order nonlinear optical properties of β enhanced PVDF based nanocomposite thin films[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(13): 12447-12455. doi: 10.1007/s10854-019-01604-6
    [108] 刘丽鑫, 董建红, 张光辉, 等. 静电纺聚偏氟乙烯@硅藻土锂离子电池隔膜的制备及性能[J]. 应用化学,2020,37(12):1441-1446. doi: 10.11944/j.issn.1000-0518.2020.12.200149

    LIU L X, DONG J H, ZHANG G H, et al. Preparation and properties of polyvinylidene fluoride@diatomite fiber membranes by eletrospinning as separator of lithium-ion batteries[J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1441-1446. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.12.200149
    [109] SINGH N B, SHARMA H B, PHANJOUBAM S. Optical properties of sol-gel processed BaTiO3/PVDF nanocomposite thin films[J]. AIP Conference Proceedings, 2011, 1372(1): 332-336.
    [110] SHARMA M, QUAMARA J K, GAUR A. Behaviour of multiphase PVDF in (1-x)PVDF/(x)BaTiO3 nanocomposite films: structural, optical, dielectric and ferroelectric properties[J]. Journal of Materials Science:Materials in Electronics, 2018, 29(13): 10875-10884. doi: 10.1007/s10854-018-9163-4
    [111] EL-METWALLY E G, NASRALLAH D A, FADEL M. The effect of Li4Ti5O12 nanoparticles on structural, linear and third order nonlinear optical properties of PVDF films[J]. Materials Research Express, 2019, 6(8): 085312. doi: 10.1088/2053-1591/ab1efb
    [112] PINTO T V, CARDOSO N, COSTA P, et al. Light driven PVDF fibers based on photochromic nanosilica@naphthopyran fabricated by wet spinning[J]. Applied Surface Science, 2019, 470: 951-958. doi: 10.1016/j.apsusc.2018.11.203
    [113] GEORGE R, THOMAS S, SIMON S M, et al. Sm3+ -doped PVDF-SiO2 hybrid for greenish-blue light emission[J]. Materials Today:Proceedings, 2020, 33: 1384-1388. doi: 10.1016/j.matpr.2020.05.141
    [114] EL-SAYED S. Optical properties and dielectric relaxation of polyvinylidene fluoride thin films doped with gadolinium chloride[J]. Physica B:Condensed Matter, 2014, 454: 197-203. doi: 10.1016/j.physb.2014.07.076
    [115] GAUR A M, RANA D S. Structural, optical and electrical properties of MgCl2 doped polyvinylidene fluoride (PVDF) composites[J]. Journal of Materials Science:Materials in Electronics, 2015, 26(2): 1246-1251. doi: 10.1007/s10854-014-2533-7
    [116] EL-KHODARY A, ABDELAZIZ M, HASSAN G M. Crystal structure and physical properties of PVDF films filled with CuCl2-MnCl2 mixed fillers[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2005, 54(7): 633-650. doi: 10.1080/00914030490499125
    [117] SHALTOUT A A, MOSTAFA N Y, MAHANI R M, et al. Investigation of structural and optical properties of molybdenum disulfide flakes/polyvinylidene fluoride nanocomposites[J]. Journal of Materials Research and Technology, 2020, 9(6): 14350-14359. doi: 10.1016/j.jmrt.2020.10.009
    [118] YESAPPA L, NIRANJANA M, ASHOKKUMAR S P, et al. Optical properties and ionic conductivity studies of an 8 MeV electron beam irradiated poly(vinylidene fluoride-co-hexafluoropropylene)/LiClO4 electrolyte film for opto-electronic applications[J]. RSC Advances, 2018, 8(28): 15297-15309. doi: 10.1039/C8RA00970H
    [119] TAWANSI A, ORABY A H, BADR S I, et al. Physical properties and β‐phase increment of AgNO3‐filled poly(vinylidene fluoride) films[J]. Polymer International, 2004, 53(4): 370-377. doi: 10.1002/pi.1325
    [120] ZHANG L, XIAO D Q, MA J. Dielectric properties of PVDF/Ag/BaTiO3 composites[J]. Ferroelectrics, 2013, 455(1): 77-82. doi: 10.1080/00150193.2013.844011
    [121] 陈林, 黄娇, 严磊, 等. 多尺度功能性填料PVDF基纳米复合材料的制备和性能[J]. 材料研究学报,2020,34(11):835-844.

    CHEN L, HUANG J, YAN L, et al. Preparation and properties of PVDF based dielectric nanocomposites containing multi-scale functional fillers[J]. Chinese Journal of Materials Research, 2020, 34(11): 835-844. (in Chinese)
    [122] YU K, HU SH, YU W D, et al. Dielectric and piezoelectric properties of 0.970(0.95(K0.485Na0.515)NbO3-0.05LiSbO3)-0.015CuO-0.015Al2O3/PVDF 0-3 composite reinforced with two kinds of ZnO powder[J]. Optical and Quantum Electronics, 2019, 51(10): 336. doi: 10.1007/s11082-019-2051-1
    [123] YANG L, QIU J H, JI H L, et al. Enhanced dielectric and ferroelectric properties induced by TiO2@MWCNTs nanoparticles in flexible poly(vinylidene fluoride) composites[J]. Composites Part A:Applied Science and Manufacturing, 2014, 65: 125-134. doi: 10.1016/j.compositesa.2014.06.006
    [124] WITTINANON T, RIANYOI R, CHAIPANICH A. Effect of polyvinylidene fluoride on the fracture microstructure characteristics and piezoelectric and mechanical properties of 0-3 barium zirconate titanate ceramic-cement composites[J]. Journal of the European Ceramic Society, 2020, 40(14): 4886-4893. doi: 10.1016/j.jeurceramsoc.2020.02.041
    [125] 马安彤, 付超, 楚慧颖, 等. 高β相聚偏氟乙烯基复合体系的制备及压电性能[J]. 应用化学,2020,37(12):1411-1419. doi: 10.11944/j.issn.1000-0518.2020.12.200133

    MA A T, FU CH, CHU H Y, et al. Fabrication and piezoelectric properties of polyvinylidene fluoride composites with high β phase[J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1411-1419. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.12.200133
    [126] WANG H, WANG J, XIANG X, et al. Preparation of PVDF/CdS/Bi2WO6/ZnO hybrid membrane with enhanced visible-light photocatalytic activity for degrading nitrite in water[J]. Environmental Research, 2020, 191: 110036. doi: 10.1016/j.envres.2020.110036
    [127] 董莉, 刘向东, 熊征蓉, 等. 大分子紫外线吸收剂的制备及其在聚偏氟乙烯中的应用[J]. 应用化学,2018,35(7):776-780. doi: 10.11944/j.issn.1000-0518.2018.07.170331

    DONG L, LIU X D, XIONG ZH R, et al. Preparation of macromolecular ultra-violet absorber and its application in poly(vinylidene fluoride)[J]. Chinese Journal of Applied Chemistry, 2018, 35(7): 776-780. (in Chinese) doi: 10.11944/j.issn.1000-0518.2018.07.170331
    [128] SU H B, STRACHAN A, GODDARD III W A. Density functional theory and molecular dynamics studies of the energetics and kinetics of electroactive polymers: PVDF and P(VDF-TrFE)[J]. Physical Review B, 2004, 70(6): 064101.
    [129] HEO W J, KIM W J, SHIN Y H, et al. Density functional study of α-β phase transition of polyvinylidene difluoride[J]. Physica Status Solidi (RRL)- Rapid Research Letters, 2012, 6(5): 217-219. doi: 10.1002/pssr.201206081
    [130] LI J C, WANG C L, YANG K, et al. Electronic structure of α and β-phase of poly (vinylidene fluoride)[J]. Integrated Ferroelectrics, 2006, 78(1): 27-33. doi: 10.1080/10584580600657054
    [131] ROWAN C K, PACI I. Optical properties of Ag/polyvinylidene fluoride nanocomposites: a theoretical study[J]. The Journal of Physical Chemistry C, 2011, 115(16): 8316-8324. doi: 10.1021/jp200428e
    [132] 程和平, 陈光华, 覃睿, 等. 聚偏二氟乙烯晶体的电子结构和光学性质[J]. 物理化学学报,2014,30(2):281-288. doi: 10.3866/PKU.WHXB201312171

    CHENG H P, CHEN G H, QIN R, et al. Electronic structures and optical properties of poly(vinylidene fluoride) crystals[J]. Acta Physico-Chimica Sinica, 2014, 30(2): 281-288. (in Chinese) doi: 10.3866/PKU.WHXB201312171
    [133] DONG R, RANJAN V, NARDELLI M B, et al. First-principles simulations of PVDF copolymers with high dielectric energy density: PVDF-HFP and PVDF-BTFE[J]. Physical Review B, 2016, 94(1): 014210. doi: 10.1103/PhysRevB.94.014210
    [134] GUO M F, GUO CH Q, HAN J, et al. Toroidal polar topology in strained ferroelectric polymer[J]. Science, 2021, 371(6533): 1050-1056. doi: 10.1126/science.abc4727
  • 加载中
图(7) / 表(4)
计量
  • 文章访问数:  1314
  • HTML全文浏览量:  631
  • PDF下载量:  214
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2021-12-16
  • 网络出版日期:  2022-06-24

目录

    /

    返回文章
    返回