留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

面结构光在机检测的叶片反光抑制技术

李茂月 刘泽隆 赵伟翔 肖桂风

李茂月, 刘泽隆, 赵伟翔, 肖桂风. 面结构光在机检测的叶片反光抑制技术[J]. 中国光学(中英文), 2022, 15(3): 464-475. doi: 10.37188/CO.2021-0194
引用本文: 李茂月, 刘泽隆, 赵伟翔, 肖桂风. 面结构光在机检测的叶片反光抑制技术[J]. 中国光学(中英文), 2022, 15(3): 464-475. doi: 10.37188/CO.2021-0194
LI Mao-yue, LIU Ze-long, ZHAO Wei-xiang, XIAO Gui-feng. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. doi: 10.37188/CO.2021-0194
Citation: LI Mao-yue, LIU Ze-long, ZHAO Wei-xiang, XIAO Gui-feng. Blade reflection suppression technology based on surface structured light on-machine detection[J]. Chinese Optics, 2022, 15(3): 464-475. doi: 10.37188/CO.2021-0194

面结构光在机检测的叶片反光抑制技术

基金项目: 国家自然科学基金资助项目(No. 51975169);黑龙江省普通高校基本科研业务费专项资金资助项目(No. 2019-KYYWF-0204)
详细信息
    作者简介:

    李茂月(1981—),男,山东青岛人,博士,教授,博士生导师,2004 年于南京林业大学获得学士学位,2007 年于长安大学获得硕士学位,2012 年于哈尔滨工业大学获得博士学位,主要从事智能加工与光学检测技术方面的研究。E-mail:lmy0500@163.com

    刘泽隆(1996—),男,黑龙江大庆人,硕士研究生,2019 年于哈尔滨理工大学获得学士学位,目前在哈尔滨理工大学攻读硕士学位,主要从事图像处理和机器视觉方面的研究。E-mail: LZL_LOUIS1231@163.com

  • 中图分类号: TH741

Blade reflection suppression technology based on surface structured light on-machine detection

Funds: Supported by National Natural Science Foundation of China (No. 51975169) ;the Fundamental Research Fundation for Universities of Heilongjiang Province (No. 2019-KYYWF-0204)
More Information
  • 摘要: 薄壁叶片在结构光检测过程中,由于其表面粗糙度较小,易产生强烈的反光现象,影响求解条纹相位主值,进而无法准确重构出三维点云。本文以加工过程中的叶片作为研究对象,提出一种对在机检测过程中的条纹图像进行图像增强处理的Retinex算法,恢复条纹在高反光位置的信息。首先,对薄壁叶片的反光特性进行分析,通过实验标定出最优曝光的灰度区间和理想灰度值,建立了光圈转动角度与图像平均灰度的相机响应曲线模型,调节光圈和曝光时间至最优曝光的灰度区间并以此作为检测条件。其次,基于Retinex算法处理条纹图像,通过改进的双边滤波代替常用的高斯滤波,在去除光照的同时有效保留了条纹的边缘信息。最后,对薄壁叶片进行单目结构光检测。实验结果表明,经本文算法处理后的条纹图像,通过Canny算子检测出的条纹数量最多,图像信息熵平均增长率达18.21%,解算的相位主值误差最小,利用手持式激光扫描仪检测的标准点云进行偏差分析,点云的正、负偏差分别降至0.0589 mm和−0.0590 mm,与原点云的偏差值相比分别减少了44.6%和44.1%,表面质量得到明显改善。本文提出的图像增强算法有效抑制了面结构光检测过程中的金属表面反光。

     

  • 图 1  单目结构光测量系统模型

    Figure 1.  Monocular structured light measurement system model

    图 2  薄壁叶片表面光照现象

    Figure 2.  Light phenomenon on the thin-walled blade surface

    图 3  不同曝光下图像效果。(a) 低曝光图像;(b) 高曝光图像

    Figure 3.  Image effects under different exposures. (a) Low-exposure image; (b) high-exposure image

    图 4  相机响应曲线

    Figure 4.  Camera response curve

    图 5  相机调节结构

    Figure 5.  Camera adjustment structure

    图 6  不同曝光条件下的原图像、图像灰度值及点云图像

    Figure 6.  Original images, image gray values and point cloud images under different exposure conditions

    图 7  不同环境光时的相机响应曲线

    Figure 7.  Camera response curves under different ambient lights

    图 8  相机光圈自适应调节流程图

    Figure 8.  Flow chart of camera aperture adaptive adjustment

    图 9  本文算法流程图

    Figure 9.  Flow chart of proposed algorithm

    图 10  单目结构光检测实验场景

    Figure 10.  Experimental scene of monocular structured light detection

    图 11  待测薄壁叶片

    Figure 11.  Thin-walled blade to be inspected

    图 12  经不同算法处理的条纹图像

    Figure 12.  Fringe images processed by different algorithms

    图 13  Canny算子边缘检测结果

    Figure 13.  Canny operator edge detection results

    图 14  4种算法处理前后相位主值和点云效果对比图

    Figure 14.  Comparison of phase principal values and point cloud effects before and after processing by four different algorithms

    图 15  点云偏差分析结果

    Figure 15.  Point cloud deviation analysis results

    图 16  铝合金金属板结构光检测结果

    Figure 16.  Structural light detection results of the aluminum alloy metal plate

    表  1  工业相机主要参数

    Table  1.   Main parameters of the industrial camera

    性能参数参数值
    分辨率1280(H)×1024(V)
    帧率/frame·s−130
    传感器类型CMOS
    靶面尺寸/mm7.2×5.3
    像素尺寸/μm5.2×5.2
    下载: 导出CSV

    表  2  不同方法处理前后的条纹图像信息熵

    Table  2.   Information entropies of fringe image by different processing methods

    原图SSRMSR双边本文
    频率15.69296.84786.93486.25697.0843
    频率25.95516.96117.01676.44427.2099
    频率36.74787.17587.24666.76707.3638
    下载: 导出CSV
  • [1] 李茂月, 马康盛, 许勇浩, 等. 基于单目结构光的形貌测量误差补偿方法研究[J]. 仪器仪表学报,2020,41(5):19-31.

    LI M Y, MA K SH, XU Y H, et al. Research on morphology measurement error compensation method based on the monocular structure light[J]. Chinese Journal of Scientific Instrument, 2020, 41(5): 19-31. (in Chinese)
    [2] 马国庆, 刘丽, 于正林, 等. 大型复杂曲面三维形貌测量及应用研究进展[J]. 中国光学,2019,12(2):214-228. doi: 10.3788/co.20191202.0214

    MA G Q, LIU L, YU ZH L, et al. Application and development of three-dimensional profile measurement for large and complex surface[J]. Chinese Optics, 2019, 12(2): 214-228. (in Chinese) doi: 10.3788/co.20191202.0214
    [3] 张申华, 杨延西, 秦峤孟. 针对光栅图像的快速盲去噪方法[J]. 中国光学,2021,14(3):596-604. doi: 10.37188/CO.2020-0166

    ZHANG SH H, YANG Y X, QIN Q M. A fast blind denoising method for grating image[J]. Chinese Optics, 2021, 14(3): 596-604. (in Chinese) doi: 10.37188/CO.2020-0166
    [4] PALOUSEK D, OMASTA M, KOUTNY D, et al. Effect of matte coating on 3D optical measurement accuracy[J]. Optical Materials, 2015, 40: 1-9. doi: 10.1016/j.optmat.2014.11.020
    [5] ZHANG S, YAU S T. High dynamic range scanning technique[J]. Optical Engineering, 2009, 48(3): 033604. doi: 10.1117/1.3099720
    [6] SONG ZH, JIANG H L, LIN H B, et al. A high dynamic range structured light means for the 3D measurement of specular surface[J]. Optics and Lasers in Engineering, 2017, 95: 8-16. doi: 10.1016/j.optlaseng.2017.03.008
    [7] 李兆杰, 崔海华, 刘长毅, 等. 一种基于自动多次曝光面结构光的形貌测量方法[J]. 光学学报,2018,38(11):1112004. doi: 10.3788/AOS201838.1112004

    LI ZH J, CUI H H, LIU CH Y, et al. A shape measurement method based on automatic multiple exposure surface structured light[J]. Acta Optica Sinica, 2018, 38(11): 1112004. (in Chinese) doi: 10.3788/AOS201838.1112004
    [8] WADDINGTON C J, KOFMAN J D. Modified sinusoidal fringe-pattern projection for variable illuminance in phase-shifting three-dimensional surface-shape metrology[J]. Optical Engineering, 2014, 53(8): 084109. doi: 10.1117/1.OE.53.8.084109
    [9] LIN H, GAO J, MEI Q, et al. Adaptive digital fringe projection technique for high dynamic range three-dimensional shape measurement[J]. Optics Express, 2016, 24(7): 7703-7718. doi: 10.1364/OE.24.007703
    [10] RAO L, DA F P. High dynamic range 3D shape determination based on automatic exposure selection[J]. Journal of Visual Communication and Image Representation, 2018, 50: 217-226. doi: 10.1016/j.jvcir.2017.12.003
    [11] RIVIERE J, RESHETOUSKI I, FILIPI L, et al. Polarization imaging reflectometry in the wild[J]. ACM Transactions on Graphics, 2017, 36(6): 206.
    [12] SALAHIEH B, CHEN ZH Y, RODRIGUEZ J J, et al. Multi-polarization fringe projection imaging for high dynamic range objects[J]. Optics Express, 2014, 22(8): 10064-10071. doi: 10.1364/OE.22.010064
    [13] 郝婧蕾, 赵永强, 赵海盟, 等. 偏振多光谱机器视觉的高反光无纹理目标三维重构方法[J]. 测绘学报,2018,47(6):816-824.

    HAO J L, ZHAO Y Q, ZHAO H M, et al. 3D reconstruction of high-reflective and textureless targets based on multispectral polarization and machine vision[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 816-824. (in Chinese)
    [14] 王浩, 张叶, 沈宏海, 等. 图像增强算法综述[J]. 中国光学,2017,10(4):438-448. doi: 10.3788/co.20171004.0438

    WANG H, ZHANG Y, SHEN H H, et al. Review of image enhancement algorithms[J]. Chinese Optics, 2017, 10(4): 438-448. (in Chinese) doi: 10.3788/co.20171004.0438
    [15] 王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese) doi: 10.37188/CO.2020-0199
    [16] COOK R L, TORRANCE K E. A reflectance model for computer graphics[J]. ACM Transactions on Graphics, 1982, 1(1): 7-24. doi: 10.1145/357290.357293
    [17] 张颖, 李金龙, 黄趾维, 等. 基于BRDF模型的金属表面反射特性及相变特性研究[J]. 光电技术应用,2017,32(3):32-35.

    ZHANG Y, LI J L, HUANG ZH W, et al. Research on reflection and phase shift characters of metal surface based on BRDF model[J]. Electro-optic Technology Application, 2017, 32(3): 32-35. (in Chinese)
    [18] 王金海, 李华, 魏力. 基于C-T模型的光学元件加工表面的光学特性研究[J]. 光学技术,2021,47(2):172-177.

    WANG J H, LI H, WEI L. Study on optical properties of machining surface of optical element based on C-T model[J]. Optical Technique, 2021, 47(2): 172-177. (in Chinese)
    [19] LAND E H, MCCANN J J. Lightness and retinex theory[J]. Journal of the Optical Society of America, 1971, 61(1): 1-11. doi: 10.1364/JOSA.61.000001
    [20] 毛向向, 王红军. 薄壁零件复杂光照情况下的轮廓特征识别[J]. 电子测量与仪器学报,2021,35(3):137-143.

    MAO X X, WANG H J. Improved retinex and edge detection fusion of thin-walled complex part contour recognition algorithm[J]. Journal of Electronic Measurement and Instrumentation, 2021, 35(3): 137-143. (in Chinese)
    [21] 冯维, 吴贵铭, 赵大兴, 等. 多图像融合Retinex用于弱光图像增强[J]. 光学 精密工程,2020,28(3):736-744. doi: 10.3788/OPE.20202803.0736

    FENG W, WU G M, ZHAO D X, et al. Multi images fusion Retinex for low light image enhancement[J]. Optics and Precision Engineering, 2020, 28(3): 736-744. (in Chinese) doi: 10.3788/OPE.20202803.0736
    [22] 石磊, 奚茂龙, 孙俊. 基于可控核双边滤波Retinex水下图像增强算法[J]. 量子电子学报,2018,35(1):7-12.

    SHI L, XI M L, SUN J. Underswater image enhancement algorithm based on controllable nuclear bilateral filtering Retinex[J]. Chinese Journal of Quantum Electronics, 2018, 35(1): 7-12. (in Chinese)
    [23] 王冬云, 唐楚, 鄂世举, 等. 基于导向滤波Retinex和自适应Canny的图像边缘检测[J]. 光学 精密工程,2021,29(2):443-451. doi: 10.37188/OPE.20212902.0443

    WANG D Y, TANG CH, E SH J, et al. Image edge detection based on guided filter Retinex and adaptive Canny[J]. Optics and Precision Engineering, 2021, 29(2): 443-451. (in Chinese) doi: 10.37188/OPE.20212902.0443
  • 加载中
图(16) / 表(2)
计量
  • 文章访问数:  1148
  • HTML全文浏览量:  596
  • PDF下载量:  202
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-08
  • 修回日期:  2021-12-07
  • 录用日期:  2022-01-21
  • 网络出版日期:  2022-01-26
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回