The principle, performance characterization and research progress of nonlinear optical limiting materials
-
摘要:
激光防护材料在保护人眼和光学器件免受强激光破坏方面具有重要意义,其中基于非线性光学原理工作的固态光限幅材料有望成为未来激光防护的主体。本文介绍了光限幅材料的研究背景、工作机理、参数指标以及测试技术,综述了目前具有实用前景的多类光限幅材料的研究进展,对无机半导体材料、共轭有机高分子、无机金属团簇、碳纳米材料、二维材料等5类材料做了重点介绍,探讨这些光限幅材料的发展前景,并介绍了相关材料在固态基质中器件化的研究现状。
Abstract:Laser protection materials are of great significance in protecting human eyes and optical components from strong laser pulses. Among them, solid optical limiting materials based on the principle of nonlinear optics will be the main carriers for laser protection. This article introduces the research background, working mechanism, parameters and testing techniques of optical limiting materials, and reviews the research progress of various optical limiting materials with practical prospects, including inorganic semiconductor materials, conjugated organic polymers, inorganic metal clusters, carbon nanomaterials, and two-dimensional materials. And the development prospects of optical limiting materials are discussed.
-
Key words:
- optical limiting /
- nonlinear optics /
- laser protection
-
表 1 5类光限幅材料的限幅机理、性能特点及目前的技术指标
Table 1. The mechanism, characteristics and the technical indicators of the five types of optical limiting materials
材料类别 光限幅机理 性能特点 代表材料 光限幅技术指标 参考文献 无机半导体材料 双光子吸收
载流子吸收
非线性折射制备简单、成本低廉、
物化性质稳定,限幅波段单一、
线性吸收大CuS 限幅阈值:0.88 J/cm2@532 nm [15] ZnO 限幅阈值:~6 mW@633 nm [16] TiS2 限幅阈值:0.57 J/cm2 [17] 共轭有机高分子 反饱和吸收 适用于脉宽纳秒
量级以上的脉冲激光、
限幅阈值低J-dimers 限幅阈值:0.03 J/cm2@532 nm [18] (NiNc(COONa)4/TiO2)n 限幅波段:600 nm@18 ps [19] MnPcCl 限幅波段:633 nm,533 nm [20] 无机金属团簇 非线性折射
反饱和吸收结构多样、线性吸收小、
非线性性能强MoS4Cu2 限幅阈值:0.35 J/cm2@532 nm [21] 碳基纳米材料 反饱和吸收
非线性折射
非线性散射限幅阈值低、限幅波段宽,
损伤阈值高、适用于纳秒、
皮秒脉冲激光,固态化技术成熟C60(Toluene) 限幅阈值:0.2 J/cm2@532 nm [22] MWNTS 限幅阈值:1 J/cm2@532 nm [23] GO-Pt-2 限幅阈值:0.85 J/cm2@532 nm [24] 二维材料 反饱和吸收
非线性折射
非线性散射限幅波段宽,
可用于飞秒脉冲激光,
物化性质优异Si−antimonene 限幅波段:532~2000 nm
限幅阈值:0.3~2 J/cm2@532 nm[25] F16PcGa-BP 限幅波段:415~590 nm
限幅阈值:2.64 J/cm2@532 nm[26] -
[1] 韩文国, 延凤平, 冯亭, 等. 高功率掺铥光纤激光器及其在生物组织切割中的应用[J]. 发光学报,2021,42(5):708-716. doi: 10.37188/CJL.20210064HAN W G, YAN F P, FENG T, et al. High-power thulium-doped fiber laser and its application in biological tissue cutting[J]. Chinese Journal of Luminescence, 2021, 42(5): 708-716. (in Chinese) doi: 10.37188/CJL.20210064 [2] ZHOU G J, WONG W Y. Organometallic acetylides of PtII, AuI and HgII as new generation optical power limiting materials[J]. Chemical Society Reviews, 2011, 40(5): 2541-2566. doi: 10.1039/c0cs00094a [3] 朱锦鹏, 马壮, 高丽红, 等. 基于等离子喷涂的反射型激光防护涂层研究[J]. 中国光学,2017,10(5):578-587. doi: 10.3788/co.20171005.0578ZHU J P, MA ZH, GAO L H, et al. Reflective laser protective coating based on plasma spraying[J]. Chinese Optics, 2017, 10(5): 578-587. (in Chinese) doi: 10.3788/co.20171005.0578 [4] CHEN Y, HANACK M, AEAKI Y, et al. Axially modified gallium phthalocyanines and naphthalocyanines for optical limiting[J]. Chemical Society reviews, 2005, 34(6): 517-529. doi: 10.1039/b416368k [5] ZHANG L, WANG L. Recent research progress on optical limiting property of materials based on phthalocyanine, its derivatives, and carbon nanotubes[J]. Journal of Materials Science, 2008, 43(17): 5692-5701. doi: 10.1007/s10853-008-2826-4 [6] WANG J, CHEN Y, BLAN W J. Carbon nanotubes and nanotube composites for nonlinear optical devices[J]. Journal of Materials Chemistry, 2009, 19(40): 7425-7443. doi: 10.1039/b906294g [7] HIRATA S, TOTANI K, YAMASHITA T, et al. Large reverse saturable absorption under weak continuous incoherent light[J]. Nature Materials, 2014, 13(10): 938-946. doi: 10.1038/nmat4081 [8] RAHMAN S, MIRZA S, SARKAR A, et al. Design and evaluation of carbon nanotube based optical power limiting materials[J]. Journal of Nanoscience and Nanotechnology, 2010, 10(8): 4805-4823. doi: 10.1166/jnn.2010.2746 [9] TUTT L W, BOGGESS T F. A review of optical limiting mechanisms and devices using organics, fullerenes, semiconductors and other materials[J]. Progress in Quantum Electronics, 1993, 17(4): 299-338. doi: 10.1016/0079-6727(93)90004-S [10] WANG Y, LV M ZH, GUO J, et al. Carbon-based optical limiting materials[J]. Science China Chemistry, 2015, 58(12): 1782-1791. doi: 10.1007/s11426-015-5480-0 [11] 罗明海. 激光对人眼的危害及其防护材料研究[D]. 东北林业大学, 2012.LUO M H. Studies on the hazards of the laser to the human eyes and protective materials[D]. Harbin: Northeast Forestry University, 2019. (in Chinese) [12] 姜旭. 卟啉/聚芳醚酮光限幅材料的设计和研究[D]. 吉林大学, 2013.JIANG X. Design and research on optical limiting material based on porphyrins / poly (aryl ether ketones)[D]. Changchun: Jilin University, 2013. (in Chinese) [13] SHEIK-BAHAE M, SAID A A, STRYLAND E. High-sensitivity single-beam n2 measurements[J]. Optics Letters, 1989, 14(17): 955-957. doi: 10.1364/OL.14.000955 [14] CHENG Y, HAO H, XIAO H, et al. Third-order nonlinear optical properties of two novel fullerene derivatives[J]. Journal of Physics B Atomic Molecular &Optical Physics, 2009, 42(23): 235401. [15] YU X L, CAO CH B, ZHU H S, et al. Nanometer-sized copper sulfide hollow spheres with strong optical-limiting properties[J]. Advanced Functional Materials, 2010, 17(8): 1397-1401. [16] ABD-LEFDIL M, BELAYACHI A, PRAMODINI S, et al. Structural, photoinduced optical effects and third-order nonlinear optical studies on Mn doped and Mn-Al codoped ZnO thin films under continuous wave laser irradiation[J]. Laser Physics, 2014, 24(3): 035404. doi: 10.1088/1054-660X/24/3/035404 [17] LIU Y, LI X, WANG E Z, et al. Exceptional size-dependent property of TiS2 nanosheets for optical limiting[J]. Applied Surface Science, 2021, 541: 148371. doi: 10.1016/j.apsusc.2020.148371 [18] TOLBIN A Y, SAVELYEV M S, GERASIMENKO A Y, et al. Thermally stable J-type phthalocyanine dimers as new non-linear absorbers for low-threshold optical limiters[J]. Physical Chemistry Chemical Physics, 2016, 18(23): 15964-15971. doi: 10.1039/C6CP01862A [19] LI ZH G, HE CH Y, SONG W N, et al. Optical limiting properties of hybrid nickel naphthalocyanine-titania nanoparticals thin films[J]. Optics &Laser Technology, 2019, 112: 413-419. [20] DARWISH A A A, HELALI S, QASHOU S I, et al. Studying the surface morphology, linear and nonlinear optical properties of manganese (III) phthalocyanine chloride/FTO films[J]. Physica B:Condensed Matter, 2021, 622: 413355. doi: 10.1016/j.physb.2021.413355 [21] DINI D, CALVETE M J F, HANACK M. Nonlinear optical materials for the smart filtering of optical radiation[J]. Chemical Reviews, 2016, 116(22): 13043-13233. doi: 10.1021/acs.chemrev.6b00033 [22] TUTT L W, KOST A. Optical limiting performance of C60 and C70 solutions[J]. Nature, 1992, 356(6366): 225-226. doi: 10.1038/356225a0 [23] SUN X, YU R Q, XU G Q, et al. Broadband optical limiting with multiwalled carbon nanotubes[J]. Applied Physics Letters, 1998, 73(25): 3632-3634. doi: 10.1063/1.122845 [24] 刘志伟, 张斌, 陈彧. 二维纳米材料及其衍生物在激光防护领域中的应用[J]. 物理学报,2020,69(18):184201. doi: 10.7498/aps.69.20200313LIU ZH W, ZHANG B, CHEN Y. Two-dimensional nanomaterials and their derivatives for laser protection[J]. Acta Physica Sinica, 2020, 69(18): 184201. (in Chinese) doi: 10.7498/aps.69.20200313 [25] XING F Y, WANG J J, WANG ZH, et al. Covalently silane-functionalized antimonene nanosheets and their copolymerized gel glasses for broadband vis–NIR optical limiting[J]. ACS Applied Materials &Interfaces, 2021, 13(1): 897-903. [26] LIU ZH W, ZHANG B, DONG N N, et al. Perfluorinated gallium phthalocyanine axially grafted black phosphorus nanosheets for optical limiting[J]. Journal of Materials Chemistry C, 2020, 8(30): 10197-10203. doi: 10.1039/D0TC00685H [27] 白瑞雪, 杨珏晗, 魏大海, 等. 低维半导体材料在非线性光学领域的研究进展[J]. 物理学报,2020,69(18):184211. doi: 10.7498/aps.69.20200206BAI R X, YANG J H, WEI D H, et al. Research progress of low-dimensional semiconductor materials in field of nonlinear optics[J]. Acta Physica Sinica, 2020, 69(18): 184211. (in Chinese) doi: 10.7498/aps.69.20200206 [28] STEIER W H, KUMAR J, ZIARI M. Infrared power limiting and self-switching in CdTe[J]. Applied Physics Letters, 1988, 53(10): 840-841. doi: 10.1063/1.100088 [29] KAVITHA M K, HARIPADMAM P C, GOPINATH P, et al. Effect of morphology and solvent on two-photon absorption of nano zinc oxide[J]. Materials Research Bulletin, 2013, 48(5): 1967-1971. doi: 10.1016/j.materresbull.2013.01.052 [30] SHKIR M, SHAIKH S S, ALFAIFY S. An investigation on optical-nonlinear and optical limiting properties of CdS: an effect of Te doping concentrations for optoelectronic applications[J]. Journal of Materials Science:Materials in Electronics, 2019, 30(18): 17469-17480. doi: 10.1007/s10854-019-02097-z [31] CALVETE M J F, DINI D. Conjugated macrocyclic materials with photoactivated optical absorption for the control of energy transmission delivered by pulsed radiations[J]. Journal of Photochemistry and Photobiology C:Photochemistry Reviews, 2018, 35: 56-73. doi: 10.1016/j.jphotochemrev.2018.02.001 [32] BLAU W, BYRNE H, DENNIS W M, et al. Reverse saturable absorption in tetraphenylporphyrins[J]. Optics Communications, 1985, 56(1): 25-29. doi: 10.1016/0030-4018(85)90059-8 [33] BONNETT R, HARRIMAN A, KOZYREV A N. Photophysics of halogenated porphyrins[J]. Journal of the Chemical Society,Faraday Transactions, 1992, 88(6): 763-769. doi: 10.1039/ft9928800763 [34] MCEWAN K J, ROBERTSON J M, WYLIE A P, et al. Non-linear optical characteristics of novel porphyrin dye media[J]. MRS Online Proceedings Library, 1997, 479(1): 29-40. [35] MANAGA M, MGIDLANA S, KHENE S, et al. Optical limiting properties of indium 5, 10, 15, 20-tetrakis(4-aminophenyl) porphyrin covalently linked to semiconductor quantum dots[J]. Inorganica Chimica Acta, 2020, 511: 119838. doi: 10.1016/j.ica.2020.119838 [36] LIU ZH W, ZHANG B, HUANG Y L, et al. Ether-linked porphyrin covalent organic framework with broadband optical switch[J]. iScience, 2021, 24(6): 102526. doi: 10.1016/j.isci.2021.102526 [37] CHEN S H, QIN ZH H, LIU T F, et al. Aggregation-induced emission on benzothiadiazole dyads with large third-order optical nonlinearity[J]. Physical Chemistry Chemical Physics, 2013, 15(30): 12660-12666. doi: 10.1039/c3cp51273h [38] SUN J B, LIU Z T, YAN CH X, et al. Efficient construction of near-infrared absorption donor–acceptor copolymers with and without Pt (II)-incorporation toward broadband nonlinear optical materials[J]. ACS Applied Materials &Interfaces, 2020, 12(2): 2944-2951. [39] XIE ZH, HE H F, DENG Y H, et al. Three-arm star compounds composed of 1, 3, 5-tri(azobenzeneethynyl)benzene cores and flexible PEO arms: synthesis, optical functions, hybrid Ormosil gel glasses[J]. Journal of Materials Chemistry C, 2013, 1(9): 1791-1797. doi: 10.1039/c2tc00772j [40] 朱放, 肖志松, 周博, 等. β-FeSi2薄膜制备与发光研究的进展[J]. 中国光学与应用光学,2009,2(2):119-125.ZHU F, XIAO ZH S, ZHOU B, et al. Progress in preparation and luminescence of β-FeSi2 thin films[J]. Chinese Journal of Optics and Applied Optics, 2009, 2(2): 119-125. (in Chinese) [41] ZHANG CH, SONG Y L, WANG X. Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: a comparative study[J]. Coordination Chemistry Reviews, 2007, 251(1-2): 111-141. doi: 10.1016/j.ccr.2006.06.007 [42] DHONI M S, JI W. Extension of discrete-dipole approximation model to compute nonlinear absorption in gold nanostructures[J]. The Journal of Physical Chemistry C, 2011, 115(42): 20359-20366. doi: 10.1021/jp202070z [43] KULYK B, WASZKOWSKA K, BUSSEAU A, et al. Penta(zinc porphyrin)[60]fullerenes: Strong reverse saturable absorption for optical limiting applications[J]. Applied Surface Science, 2020, 533: 147468. doi: 10.1016/j.apsusc.2020.147468 [44] KAUSAR A. Advances in polymer/fullerene nanocomposite: a review on essential features and applications[J]. Polymer-Plastics Technology and Engineering, 2017, 56(6): 594-605. doi: 10.1080/03602559.2016.1233278 [45] ZHANG X L, LIU ZH B, YAN X Q, et al. Nonlinear optical and optical limiting properties of fullerene, multi-walled carbon nanotubes, graphene and their derivatives with oxygen-containing functional groups[J]. Journal of Optics, 2015, 17(1): 015501. doi: 10.1088/2040-8978/17/1/015501 [46] LAMY-MENDES A, SILVA R F, DURÃES L. Advances in carbon nanostructure-silica aerogel composites: a review[J]. Journal of Materials Chemistry A, 2018, 6(4): 1340-1369. doi: 10.1039/C7TA08959G [47] XIONG Y B, SI J H, YAN L H, et al. The influence of nonlinear scattering light distributions on the optical limiting properties of carbon nanotubes[J]. Laser Physics Letters, 2014, 11(11): 115904. doi: 10.1088/1612-2011/11/11/115904 [48] CHEN K, SU W H, WANG Y, et al. Nanocomposites of carbon nanotubes and photon upconversion nanoparticles for enhanced optical limiting performance[J]. Journal of Materials Chemistry C, 2018, 6(27): 7311-7316. doi: 10.1039/C8TC01576G [49] SAVELYEV M S, GERASIMENKO A Y, PODGAETSKII V M, et al. Conjugates of thermally stable phthalocyanine J-type dimers with single-walled carbon nanotubes for enhanced optical limiting applications[J]. Optics &Laser Technology, 2019, 117: 272-279. [50] CHIN K C, GOHEL A, ELIM H I, et al. Modified carbon nanotubes as broadband optical limiting nanomaterials[J]. Journal of Materials Research, 2006, 21(11): 2758-2766. doi: 10.1557/jmr.2006.0338 [51] 韩晶, 高扬, 焦威严, 等. 基于石墨烯纳米带的中红外等离激元调控[J]. 中国光学,2020,13(3):627-636.HAN J, GAO Y, JIAO W Y, et al. Mid-infrared plasmon regulation based on graphene nanoribbons[J]. Chinese Optics, 2020, 13(3): 627-636. (in Chinese) [52] FENG M, ZHAN H B, CHEN Y. Nonlinear optical and optical limiting properties of graphene families[J]. Applied Physics Letters, 2010, 96: 033107. doi: 10.1063/1.3279148 [53] 陈健, 孟文潮, 凌枭, 等. 氧化石墨烯的多色发光及其在荧光成像中的应用[J]. 中国光学,2018,11(3):377-391. doi: 10.3788/co.20181103.0377CHEN J, MENG W CH, LING X, et al. Multicolor fluorescent emission of graphene oxide and its application in fluorescence imaging[J]. Chinese Optics, 2018, 11(3): 377-391. (in Chinese) doi: 10.3788/co.20181103.0377 [54] LIU ZH B, WANG Y, ZHANG X L, et al. Nonlinear optical properties of graphene oxide in nanosecond and picosecond regimes[J]. Applied Physics Letters, 2009, 94(2): 021902. doi: 10.1063/1.3068498 [55] LI Y X, ZHU J H, CHEN Y, et al. Synthesis and strong optical limiting response of graphite oxide covalently functionalized with gallium phthalocyanine[J]. Nanotechnology, 2011, 22(20): 205704. doi: 10.1088/0957-4484/22/20/205704 [56] 张小丽, 王雷, 李冬, 等. 硒化铅核壳量子点的合成与应用研究进展[J]. 发光学报,2020,41(6):631-645.ZHANG X L, WANG L, LI D, et al. PbSe based core/shell quantum dots: from colloidal synthesis to optoelectronic application[J]. Chinese Journal of Luminescence, 2020, 41(6): 631-645. (in Chinese) [57] 王佳彤, 黄启章, 高剑峤, 等. CdSe量子点滤光片尺寸、温度依赖的光学特性[J]. 中国光学,2021,14(1):163-169. doi: 10.37188/CO.2020-0198WANG J T, HUANG Q ZH, GAO J Q, et al. Size and temperature dependence of spectral transmittance for CdSe colloidal quantum dot film filters[J]. Chinese Optics, 2021, 14(1): 163-169. (in Chinese) doi: 10.37188/CO.2020-0198 [58] ZHAO M, PENG R, ZHENG Q, et al. Broadband optical limiting response of a graphene–PbS nanohybrid[J]. Nanoscale, 2015, 7(20): 9268-9274. doi: 10.1039/C5NR01088H [59] LIU R, HU J Y, ZHU S Q, et al. Synergistically enhanced optical limiting property of graphene oxide hybrid materials functionalized with Pt complexes[J]. ACS Applied Materials &Interfaces, 2017, 9(38): 33029-33040. [60] DU Y L, DONG N N, ZHANG M H, et al. Covalent functionalization of graphene oxide with porphyrin and porphyrin incorporated polymers for optical limiting[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 2252-2260. doi: 10.1039/C6CP05920A [61] WANG A J, SHEN X L, WANG Q, et al. Enhanced optical limiting and hydrogen evolution of graphene oxide nanohybrids covalently functionalized by covalent organic polymer based on porphyrin[J]. Dalton Transactions, 2021, 50(20): 7007-7016. doi: 10.1039/D1DT00756D [62] BAI T, LI C Q, SUN J, et al. Covalent modification of graphene oxide with carbazole groups for laser protection[J]. Chemistry-A European Journal, 2015, 21(12): 4622-4627. doi: 10.1002/chem.201405509 [63] 刘凯鹏, 孙军, 张宏科, 等. 新型高效双极性磷光主体材料的合成及光电性能[J]. 发光学报,2020,41(11):1383-1390. doi: 10.37188/CJL.20200205LIU K P, SUN J, ZHANG H K, et al. Synthesis and photoelectronic properties of novel high-efficiency bipolar phosphorescent host material[J]. Chinese Journal of Luminescence, 2020, 41(11): 1383-1390. (in Chinese) doi: 10.37188/CJL.20200205 [64] 陈哲学, 王卫彪, 梁程, 等. 二维量子片及其光学研究进展[J]. 中国光学,2021,14(1):1-17. doi: 10.37188/CO.2020-0060CHEN ZH X, WANG W B, LIANG CH, et al. Progress on two-dimensional quantum sheets and their optics[J]. Chinese Optics, 2021, 14(1): 1-17. (in Chinese) doi: 10.37188/CO.2020-0060 [65] WU J Q, WEI Y, SHEN W L, et al. Antimonene nanosheets fabricated by laser irradiation technique with outstanding nonlinear absorption responses[J]. Applied Physics Letters, 2020, 116(26): 261903. doi: 10.1063/5.0013356 [66] LIU Q R, HU S Y, ZHANG CH X, et al. Polarization-dependent and wavelength-tunable optical limiting and transparency of multilayer selenium-doped black phosphorus[J]. Advanced Optical Materials, 2021, 9(1): 2001562. doi: 10.1002/adom.202001562 [67] El-MONGY S A, MOHAMMED M I, YAHIA I S. Preparation and spectroscopic studies of PbI2-doped poly (methyl methacrylate) nanocomposites films: dielectric and optical limiting approach[J]. Optical Materials, 2020, 100: 109626. doi: 10.1016/j.optmat.2019.109626 [68] LIAO Q B, ZHANG Q, WANG X L, et al. Facile fabrication of POSS-Modified MoS2/PMMA nanocomposites with enhanced thermal, mechanical and optical limiting properties[J]. Composites Science and Technology, 2018, 165: 388-396. doi: 10.1016/j.compscitech.2018.07.008 [69] GANESHA K V S, MAIDUR S R, PATIL P S, et al. Role of copper dopant in two-photon absorption and nonlinear optical properties of sprayed ZnS thin films for optical limiting applications[J]. Physics Letters A, 2021, 398: 127276. doi: 10.1016/j.physleta.2021.127276 [70] SANUSI K, NYOKONG T. Enhanced optical limiting behaviour of indium phthalocyanine derivatives when in solution or embedded in poly (acrylic acid) or poly (methyl methacrylate) polymers[J]. Journal of Photochemistry and Photobiology A:Chemistry, 2015, 303-304: 44-52. doi: 10.1016/j.jphotochem.2015.02.003 [71] El-ZAIDIA E F M, QASHOU S I, DARWISH A A A, et al. Thermally evaporated of homogeneous nanostructured gallium-phthalocyanine-chloride films: optical spectroscopy[J]. Optical Materials, 2020, 109: 110407. doi: 10.1016/j.optmat.2020.110407 [72] DARWISH A A A, HAMDALLA T A, El-ZAIDIA E F M, et al. Thin films of nanostructured gallium (III) chloride phthalocyanine deposited on FTO: structural characterization, optical properties, and laser optical limiting[J]. Physica B:Condensed Matter, 2020, 539: 412321. [73] INNOCENZI P, BRUSATIN G. Fullerene-based organic−inorganic nanocomposites and their applications[J]. Chemistry of Materials, 2001, 13(10): 3126-3139. doi: 10.1021/cm0110223 [74] 夏海平, 朱从善, 龚辉, 等. C60在微孔玻璃中的渗透及光限制效应的研究[J]. 中国激光,1995,22(9):701-704. doi: 10.3321/j.issn:0258-7025.1995.09.015XIA H P, ZHU C SH, GONG H, et al. Diffusion of C60 in porous silica glass and its optical limiting effect[J]. Chinese Journal of Lasers, 1995, 22(9): 701-704. (in Chinese) doi: 10.3321/j.issn:0258-7025.1995.09.015 [75] MORALES-SAAVEDRA O G, CASTAÑEDA R, BAÑUELOS J G, et al. Preparation of fullerene (C60) based SiO2 sonogel hybrid composites: UV laser induced photo-polymerization, morphological, and optical properties[J]. Journal of Nanoscience and Nanotechnology, 2008, 8(7): 3582-3594. doi: 10.1166/jnn.2008.18328 [76] 黄舒桐, 张斌, 陈彧. 三苯胺-芴共聚物桥联的[60]富勒烯功能材料的合成及非线性光学性能[J]. 功能高分子学报,2020,33(5):441-451.HUANG S T, ZHANG B, CHEN Y. Synthesis and nonlinear optical performance of triphenylamine-fluorene copolymer covalently bridged [60]fullerene triad[J]. Journal of Functional Polymers, 2020, 33(5): 441-451. (in Chinese) [77] ZHENG X, CHEN R Z, SHI G, et al. Characterization of nonlinear properties of black phosphorus nanoplatelets with femtosecond pulsed Z-scan measurements[J]. Optics Letters, 2015, 40(15): 3480-3483. doi: 10.1364/OL.40.003480 [78] SHI M K, HUANG SH T, DONG N N, et al. Donor–acceptor type blends composed of black phosphorus and C60 for solid-state optical limiters[J]. Chemical Communications, 2018, 54(4): 366-369. doi: 10.1039/C7CC07937K [79] ALI H E, ALGARNI H, YAHIA I S, et al. Optical absorption and linear/nonlinear parameters of polyvinyl alcohol films doped by fullerene[J]. Chinese Journal of Physics, 2021, 72: 270-285. doi: 10.1016/j.cjph.2021.04.022 [80] ZHAN H B, CHEN W ZH, WANG M Q, et al. Optical limiting effects of multi-walled carbon nanotubes suspension and silica xerogel composite[J]. Chemical Physics Letters, 2003, 382(3-4): 313-317. doi: 10.1016/j.cplett.2003.10.066 [81] ZHANG X L, LIU ZH B, ZHAO X, et al. Optical limiting effect and ultrafast saturable absorption in a solid PMMA composite containing porphyrin-covalently functionalized multi-walled carbon nanotubes[J]. Optics Express, 2013, 21(21): 25277-25284. doi: 10.1364/OE.21.025277 [82] SEKHOSANA K E, NYOKONG T. Optical limiting response of multi-walled carbon nanotube-phthalocyanine nanocomposite in solution and when in poly (acrylic acid)[J]. Journal of Molecular Structure, 2016, 1117: 140-146. doi: 10.1016/j.molstruc.2016.03.067 [83] YUKSEK M, KAYA E Ç, KARABULUTLU N, et al. Enhancing of the nonlinear absorption and optical limiting performances of the phthalocyanine thin films by adding of the single walled carbon nanotubes in poly (methyl methacrylate) host[J]. Optical Materials, 2019, 91: 326-332. doi: 10.1016/j.optmat.2019.03.045 [84] LI P L, WANG Y H, SHANG M, et al. Enhanced optical limiting properties of graphene oxide-ZnS nanoparticles composites[J]. Carbon, 2020, 159: 1-8. doi: 10.1016/j.carbon.2019.12.013 [85] 苏香香, 杨蓉, 李兰, 等. 氮掺杂石墨烯的制备及其在化学储能中的研究进展[J]. 应用化学,2018,35(2):137-146. doi: 10.11944/j.issn.1000-0518.2018.02.170036SU X X, YANG R, LI L, et al. Research Progress of Preparation of Nitrogen-doped Graphene and Its Application in Chemical Energy Storage[J]. Chinese Journal of Applied Chemistry, 2018, 35(2): 137-146. (in Chinese) doi: 10.11944/j.issn.1000-0518.2018.02.170036 [86] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究[J]. 物理学报,2013,62(1):014204. doi: 10.7498/aps.62.014204LU J J, FENG M, ZHAN H B. Preparation of graghene oxide/chitosan composite films and investigations on their nonlinear optical limiting effect[J]. Acta Physica Sinica, 2013, 62(1): 014204. (in Chinese) doi: 10.7498/aps.62.014204 [87] GAN Y, FENG M, ZHAN H B. Enhanced optical limiting effects of graphene materials in polyimide[J]. Applied Physics Letters, 2014, 104(17): 171105. doi: 10.1063/1.4874336 [88] PAN R, GUO J, WANG T, et al. Optical limiting properties of graphene/polymer composites[J]. Journal of Nanoscience and Nanotechnology, 2016, 16(4): 3632-3635. doi: 10.1166/jnn.2016.11865 [89] MURALIDHARAN M N, MATHEW S, SEEMA A, et al. Optical limiting properties of in situ reduced graphene oxide/polymer nanocomposites[J]. Materials Chemistry and Physics, 2016, 171: 367-373. doi: 10.1016/j.matchemphys.2016.01.030 [90] SABIRA K, SAHEEDA P, DIVYASREE M C, et al. Impressive nonlinear optical response exhibited by Poly (vinylidene fluoride) (PVDF)/reduced graphene oxide (RGO) nanocomposite films[J]. Optics &Laser Technology, 2017, 97: 77-83. [91] ZHENG X Q, FENG M, LI ZH G, et al. Enhanced nonlinear optical properties of nonzero-bandgap graphene materials in glass matrices[J]. Journal of Materials Chemistry C, 2014, 2(21): 4121-4125. doi: 10.1039/C3TC32410A [92] SUN X M, HU X J, SUN J B, et al. Broadband optical limiting and nonlinear optical graphene oxide co-polymerization Ormosil glasses[J]. Advanced Composites and Hybrid Materials, 2018, 1(2): 397-403. doi: 10.1007/s42114-018-0033-6