留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太赫兹超分辨率成像研究进展

曹丙花 张宇盟 范孟豹 孙凤山 刘林

曹丙花, 张宇盟, 范孟豹, 孙凤山, 刘林. 太赫兹超分辨率成像研究进展[J]. 中国光学(中英文), 2022, 15(3): 405-417. doi: 10.37188/CO.2021-0198
引用本文: 曹丙花, 张宇盟, 范孟豹, 孙凤山, 刘林. 太赫兹超分辨率成像研究进展[J]. 中国光学(中英文), 2022, 15(3): 405-417. doi: 10.37188/CO.2021-0198
CAO Bing-hua, ZHANG Yu-meng, FAN Meng-bao, SUN Feng-shan, LIU Lin. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 2022, 15(3): 405-417. doi: 10.37188/CO.2021-0198
Citation: CAO Bing-hua, ZHANG Yu-meng, FAN Meng-bao, SUN Feng-shan, LIU Lin. Research progress of terahertz super-resolution imaging[J]. Chinese Optics, 2022, 15(3): 405-417. doi: 10.37188/CO.2021-0198

太赫兹超分辨率成像研究进展

doi: 10.37188/CO.2021-0198
基金项目: 国家自然科学基金(No. 62071471);江苏省自然科学基金(No. BK20211244)
详细信息
    作者简介:

    曹丙花(1981—),女,山东泰安人,博士,副教授,博士生导师,2004年6月于电子科技大学获得学士学位,2009年6月于浙江大学获得博士学位,2009年至今于中国矿业大学信息与控制工程学院任教。主要从事人工智能及应用、太赫兹无损检测与成像、嵌入式系统及仪器开发、机器人开发等方面研究。E-mail: caobinghua@cumt.edu.cn

    张宇盟(1993—),男,内蒙古通辽人,硕士研究生在读。主要从事太赫兹无损检测与成像系统方面研究。E-mail: 732412741@qq.com

  • 中图分类号: O43

Research progress of terahertz super-resolution imaging

Funds: Supported by National Natural Science Foundtion of China (No. 62071471); Natural Science Foundation of Jiangsu Province (No. BK20211244)
More Information
  • 摘要: 目前太赫兹(Terahertz, THz)成像技术在许多领域被视为最前沿技术之一,经过20年的发展,取得了巨大进步。随着科研、医疗、军事以及工业应用需求的增长,高分辨率THz图像变得不可或缺。超分辨率成像是目前THz技术的研究热点。本文首先回顾了THz系统的成像方法,包括连续波成像与脉冲波成像两种方式;在此基础上,详细介绍了THz超分辨率成像系统与THz信号处理技术,其中超分辨率成像系统包括近场成像、超透镜以及太喷射装置等,THz信号处理技术包括超分辨率重建与卷积计算等;最后,通过分析目前超分辨率成像存在的不足,比如系统的制造工艺要求高、采集速度慢以及重建图像使用的学习样本分辨率较低等,从而进一步对超分辨率成像研究方向进行展望。

     

  • 图 1  太赫兹成像装置原理图。(a)太赫兹连续波系统;(b)太赫兹时域光谱系统

    Figure 1.  Schematic diagram of the terahertz imaging device. (a) THz-CW system; (b) THz-TDS system

    图 2  (a)倏逝场示意图和(b)近场扫描示意图[19]

    Figure 2.  Schematic diagrams of (a) evanescent field and (b) near field scanning[19]

    图 3  太赫兹近场成像方法示意图。(a)共焦法原理图[25];(b)波导法示意图[28];(c)孔径法示意图[31];(d)光导探针示意图[32];(e)光导探针测量过程示意图[32]

    Figure 3.  Principle diagram of Terahertz near field imaging method. (a) Schematic diagram of confocal method[25]; (b) schematic diagram of waveguide system[28]; (c) schematic diagram of aperture system[31]; (d) schematic diagram of photoconductive probe[32]; (e) schematic diagram of photoconductive probe measurement[32]

    图 4  太赫兹超材料。(a)开口谐振环结构[37];(b)太赫兹吸波器[38]

    Figure 4.  Terahertz metamaterials. (a) Split resonant ring[37]; (b) terahertz absorber[38]

    图 5  太赫兹光栅超透镜。(a)金属光栅超透镜[42];(b)扇形光栅超透镜[43]

    Figure 5.  Terahertz grating metalens. (a) Metal grating metalens[42]; (b) sector grating metalens[43]

    图 6  太赫兹金属超透镜。(a)放射型金属线超透镜[44];(b)周期金属线超透镜[47]

    Figure 6.  Terahertz metal metalens. (a) Radial metal wire metalens[44]; (b) periodic metal wire metalens[47]

    图 7  太赫兹石墨烯超透镜。(a)双层石墨烯超透镜[50];(b)扇形多层结构石墨烯双曲超透镜[52];(c)扇形调制结构石墨烯双曲超透镜[54]

    Figure 7.  Terahertz graphene metalens. (a) Dobule-layer graphene metalens[50]; (b) sector multilayer graphene hyperbolic metalens[52]; (c) sector modulated graphene hyperbolic metalens[54]

    图 8  太喷射THz-TDS应用[59]。(a)聚四氟乙烯介质小球工作示意图;(b)硅介质光栅成像对比图

    Figure 8.  Terajet THz-TDS application[59]. (a) Working diagram of teflon sphere; (b) comparison chart of silicon dielectric grating imaging

    图 9  适应性超分辨率方法示意图[68]

    Figure 9.  Schematic diagram of an adaptive super-resolution method[68]

    图 10  采用Gaus2小波变换处理前后的成像对比图[73]

    Figure 10.  Imaging comparison diagram[73] (a) before and (b) after Gaus2 wavelet transform

  • [1] 李允植. 太赫兹科学与技术原理[M]. 崔万照, 译. 北京: 国防工业出版社, 2012: 1-9.

    LEE Y S. Principles of Terahertz Science and Technology[M]. CUI W ZH, trans. Beijing: National Defense Industry Press, 2012: 1-9. (in Chinese)
    [2] GUERBOUKHA H, NALLAPPAN K, SKOROBOGATIY M. Toward real-time terahertz imaging[J]. Advances in Optics and Photonics, 2018, 10(4): 843-938. doi: 10.1364/AOP.10.000843
    [3] MITTLEMAN D M. Twenty years of terahertz imaging [Invited][J]. Optics Express, 2018, 26(8): 9417-9431. doi: 10.1364/OE.26.009417
    [4] LIU Q CH, ZHANG Q, LI G L, et al. Terahertz spectral investigation of temperature induced polymorphic transformation of 2, 2dinitroethylene-1, 1-diamine[J]. RSC Advances, 2021, 11(11): 6247-6253. doi: 10.1039/D0RA10754A
    [5] WANG Q, XIE L J, YING Y B, et al. Overview of imaging methods based on terahertz time-domain spectroscopy[J]. Applied Spectroscopy Reviews, 2021: 1-16. doi: 10.1080/05704928.2021.1875480
    [6] 阎春生, 黄晨, 韩松涛, 等. 古代纸质文物科学检测技术综述[J]. 中国光学,2020,13(5):936-964. doi: 10.37188/CO.2020-0010

    YAN CH SH, HUANG CH, HAN S T, et al. Review on scientific detection technologies for ancient paper relics[J]. Chinese Optics, 2020, 13(5): 936-964. (in Chinese) doi: 10.37188/CO.2020-0010
    [7] 丁丽, 丁茜, 叶阳阳, 等. 室内人体隐匿物被动太赫兹成像研究进展[J]. 中国光学,2017,10(1):114-121. doi: 10.3788/co.20171001.0114

    DING L, DING X, YE Y Y, et al. Overview of passive terahertz imaging systems for indoor concealed detection[J]. Chinese Optics, 2017, 10(1): 114-121. (in Chinese) doi: 10.3788/co.20171001.0114
    [8] 石敬, 王新柯, 郑显华, 等. 太赫兹数字全息术的研究进展[J]. 中国光学,2017,10(1):131-147. doi: 10.3788/co.20171001.0131

    SHI J, WANG X K, ZHENG X H, et al. Recent advances in terahertz digital holography[J]. Chinese Optics, 2017, 10(1): 131-147. (in Chinese) doi: 10.3788/co.20171001.0131
    [9] TAO Y H, FITZGERALD A J, WALLACE V P. Non-contact, non-destructive testing in various industrial sectors with terahertz technology[J]. Sensors, 2020, 20(3): 712. doi: 10.3390/s20030712
    [10] 戴子杰, 康黎星, 龚诚, 等. PtSe2薄膜的时间分辨太赫兹光谱特性研究(特邀)[J]. 光子学报,2021,50(8):0850206. doi: 10.3788/gzxb20215008.0850206

    DAI Z J, KANG L X, GONG CH, et al. Exploration of PtSe2 thin film based on time-resolved terahertz spectroscopy (Invited)[J]. Acta Photonica Sinica, 2021, 50(8): 0850206. (in Chinese) doi: 10.3788/gzxb20215008.0850206
    [11] UNNIKRISHNAKURUP S, DASH J, RAY S, et al. Nondestructive evaluation of thermal barrier coating thickness degradation using pulsed IR thermography and THz-TDS measurements: a comparative study[J]. NDT &E International, 2020, 116: 102367.
    [12] 叶东东, 王卫泽. 热障涂层太赫兹无损检测技术研究进展[J]. 表面技术,2020,49(10):126-137,197.

    YE D D, WANG W Z. Research progress in terahertz non-destructive testing of thermal barrier coatings[J]. Surface Technology, 2020, 49(10): 126-137,197. (in Chinese)
    [13] 曹丙花, 李素珍, 蔡恩泽, 等. 太赫兹成像技术的进展[J]. 光谱学与光谱分析,2020,40(9):2686-2695.

    CAO B H, LI S ZH, CAI E Z, et al. Progress in terahertz imaging technology[J]. Spectroscopy and Spectral Analysis, 2020, 40(9): 2686-2695. (in Chinese)
    [14] SARTORIUS B, ROEHLE H, KÜNZEL H, et al. All-fiber terahertz time-domain spectrometer operating at 1.5 µm telecom wavelengths[J]. Optics Express, 2008, 16(13): 9565-9570. doi: 10.1364/OE.16.009565
    [15] 郭澜涛, 牧凯军, 邓朝, 等. 太赫兹波谱与成像技术[J]. 红外与激光工程,2013,42(1):51-56. doi: 10.3969/j.issn.1007-2276.2013.01.010

    GUO L T, MU K J, DENG CH, et al. Terahertz spectroscopy and imaging[J]. Infrared and Laser Engineering, 2013, 42(1): 51-56. (in Chinese) doi: 10.3969/j.issn.1007-2276.2013.01.010
    [16] 张国强, 赵长兴, 辛燕, 等. 基于调频连续波太赫兹技术的复合陶瓷隔热瓦无损检测[J]. 无损检测,2020,42(12):29-34. doi: 10.11973/wsjc202012007

    ZHANG G Q, ZHAO CH X, XIN Y, et al. Nondestructive inspection for ceramic matrix composite insulation tile based on FMCW terahertz technology[J]. Nondestructive Testing, 2020, 42(12): 29-34. (in Chinese) doi: 10.11973/wsjc202012007
    [17] 王与烨, 陈霖宇, 徐德刚, 等. 太赫兹波三维成像技术研究进展[J]. 中国光学,2019,12(1):1-18. doi: 10.3788/co.20191201.0001

    WANG Y Y, CHEN L Y, XU D G, et al. Advances in terahertz three-dimensional imaging techniques[J]. Chinese Optics, 2019, 12(1): 1-18. (in Chinese) doi: 10.3788/co.20191201.0001
    [18] 李丹, 饶云坤, 凌福日. 基于太赫兹相干层析成像系统色散补偿的研究[J]. 激光技术,2017,41(6):779-783.

    LI D, RAO Y K, LING F R. Study on dispersion compensation based on terahertz coherent tomographic imaging system[J]. Laser Technology, 2017, 41(6): 779-783. (in Chinese)
    [19] SYNGE E H. XXXVIII. A suggested method for extending microscopic resolution into the ultra-microscopic region[J]. The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science, 1928, 6(35): 356-362. doi: 10.1080/14786440808564615
    [20] 刘宏翔, 姚建铨, 王与烨, 等. 太赫兹波近场成像综述[J]. 红外与毫米波学报,2016,35(3):300-309,376. doi: 10.11972/j.issn.1001-9014.2016.03.009

    LIU H X, YAO J Q, WANG Y Y, et al. Review of THz near-field imaging[J]. Journal of Infrared and Millimeter Waves, 2016, 35(3): 300-309,376. (in Chinese) doi: 10.11972/j.issn.1001-9014.2016.03.009
    [21] 刘濮鲲, 黄铁军. 太赫兹超分辨率成像评述Ⅰ: 非实时成像[J]. 微波学报,2020,36(3):1-8.

    LIU P K, HUANG T J. Terahertz super-resolution imaging I: non-real-time imagin[J]. Journal of Microwaves, 2020, 36(3): 1-8. (in Chinese)
    [22] SEO M A, ADAM A J L, KANG J H, et al. Fourier-transform terahertz near-field imaging of one-dimensional slit arrays: mapping of electric-field-, magnetic-field-, and Poynting vectors[J]. Optics Express, 2007, 15(19): 11781-11789. doi: 10.1364/OE.15.011781
    [23] CHEN H T, KERSTING R, CHO G C. Terahertz imaging with nanometer resolution[J]. Applied Physics Letters, 2003, 83(15): 3009-3011. doi: 10.1063/1.1616668
    [24] 黄铁军, 刘濮鲲. 太赫兹超分辨率成像评述Ⅱ: 实时成像[J]. 微波学报,2020,36(4):7-12,20.

    HUANG T J, LIU P K. Terahertz super-resolution imaging II: real-time imaging[J]. Journal of Microwaves, 2020, 36(4): 7-12,20. (in Chinese)
    [25] ZINOV'EV N N, ANDRIANOV A V, GALLANT A J, et al. Contrast and resolution enhancement in a confocal terahertz video system[J]. JETP Letters, 2008, 88(8): 492-495. doi: 10.1134/S0021364008200058
    [26] MENDIS R, GRISCHKOWSKY D. Undistorted guided-wave propagation of subpicosecond terahertz pulses[J]. Optics Letters, 2001, 26(11): 846-848. doi: 10.1364/OL.26.000846
    [27] 李哲, 滕达, 白丽华, 等. 太赫兹金属平行平板波导TE1模式有效折射率的近似表达式[J]. 激光与光电子学进展,2020,57(19):192302.

    LI ZH, TENG D, BAI L H, et al. Approximate formula for effective refractive index of TE1 mode in terahertz parallel-plate metal waveguides[J]. Laser &Optoelectronics Progress, 2020, 57(19): 192302. (in Chinese)
    [28] LIU J B, MENDIS R, MITTLEMAN D M, et al. A tapered parallel-plate-waveguide probe for THz near-field reflection imaging[J]. Applied Physics Letters, 2012, 100(3): 031101. doi: 10.1063/1.3677678
    [29] 杨晶, 龚诚, 赵佳宇, 等. 利用3D打印技术制备太赫兹器件[J]. 中国光学,2017,10(1):77-85. doi: 10.3788/co.20171001.0077

    YANG J, GONG CH, ZHAO J Y, et al. Fabrication of terahertz device by 3D printing technology[J]. Chinese Optics, 2017, 10(1): 77-85. (in Chinese) doi: 10.3788/co.20171001.0077
    [30] YU T, ZUO X, LIU W W, et al. 0.1THz super-resolution imaging based on 3D printed confocal waveguides[J]. Optics Communications, 2020, 459: 124896. doi: 10.1016/j.optcom.2019.124896
    [31] ISHIHARA K, OHASHI K, IKARI T, et al. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture[J]. Applied Physics Letters, 2006, 89(20): 201120. doi: 10.1063/1.2387984
    [32] NAGEL M, MICHALSKI A, KURZ H. Contact-free fault location and imaging with on-chip terahertz time-domain reflectometry[J]. Optics Express, 2011, 19(13): 12509-12514. doi: 10.1364/OE.19.012509
    [33] 杨忠波, 王化斌, 彭晓昱, 等. 基于扫描探针显微镜的近场超空间分辨指纹光谱技术研究现状[J]. 红外与毫米波学报,2016,35(1):87-98. doi: 10.11972/j.issn.1001-9014.2016.01.016

    YANG ZH B, WANG H B, PENG X Y, et al. Recent progress in scanning probe microscope based super-resolution near-field fingerprint microscopy[J]. Journal of Infrared and Millimeter Waves, 2016, 35(1): 87-98. (in Chinese) doi: 10.11972/j.issn.1001-9014.2016.01.016
    [34] BITZER A, ORTNER A, WALTHER M. Terahertz near-field microscopy with subwavelength spatial resolution based on photoconductive antennas[J]. Applied Optics, 2010, 49(19): E1-E6. doi: 10.1364/AO.49.0000E1
    [35] PENDRY J B. Negative refraction makes a perfect lens[J]. Physical Review Letters, 2000, 85(18): 3966-3969. doi: 10.1103/PhysRevLett.85.3966
    [36] 傅晓建, 石磊, 崔铁军. 太赫兹超材料及其成像应用研究进展[J]. 材料工程,2020,48(6):12-22. doi: 10.11868/j.issn.1001-4381.2019.000849

    FU X J, SHI L, CUI T J. Research progress in terahertz metamaterials and their applications in imaging[J]. Journal of Materials Engineering, 2020, 48(6): 12-22. (in Chinese) doi: 10.11868/j.issn.1001-4381.2019.000849
    [37] YEN T J, PADILLA W J, FANG N, et al. Terahertz magnetic response from artificial materials[J]. Science, 2004, 303(5663): 1494-1496. doi: 10.1126/science.1094025
    [38] LIU SH, CHEN H B, CUI T J. A broadband terahertz absorber using multi-layer stacked bars[J]. Applied Physics Letters, 2015, 106(15): 151601. doi: 10.1063/1.4918289
    [39] YAN B, YU B, XU J F, et al. Customized meta-waveguide for phase and absorption[J]. Journal of Physics D:Applied Physics, 2021, 54(46): 465102. doi: 10.1088/1361-6463/ac1466
    [40] GRBIC A, ELEFTHERIADES G V. Overcoming the diffraction limit with a planar left-handed transmission-line lens[J]. Physical Review Letters, 2004, 92(11): 117403. doi: 10.1103/PhysRevLett.92.117403
    [41] LIU ZH W, FANG N, YEN T J, et al. Rapid growth of evanescent wave by a silver superlens[J]. Applied Physics Letters, 2003, 83(25): 5184-5186. doi: 10.1063/1.1636250
    [42] JUNG J, GARCÍA-VIDAL F J, MARTÍN-MORENO L, et al. Holey metal films make perfect endoscopes[J]. Physical Review B, 2009, 79(15): 153407. doi: 10.1103/PhysRevB.79.153407
    [43] HUANG T J, TANG H H, TAN Y H, et al. Terahertz super-resolution imaging based on subwavelength metallic grating[J]. IEEE Transactions on Antennas and Propagation, 2019, 67(5): 3358-3365. doi: 10.1109/TAP.2019.2894260
    [44] BELOV P A, SIMOVSKI C R, IKONEN P. Canalization of subwavelength images by electromagnetic crystals[J]. Physical Review B, 2005, 71(19): 193105. doi: 10.1103/PhysRevB.71.193105
    [45] SILVEIRINHA M G, BELOV P A, SIMOVSKI C R. Subwavelength imaging at infrared frequencies using an array of metallic nanorods[J]. Physical Review B, 2007, 75(3): 035108. doi: 10.1103/PhysRevB.75.035108
    [46] SHVETS G, TRENDAFILOV S, PENDRY J B, et al. Guiding, focusing, and sensing on the subwavelength scale using metallic wire arrays[J]. Physical Review Letters, 2007, 99(5): 053903. doi: 10.1103/PhysRevLett.99.053903
    [47] TUNIZ A, KALTENECKER K J, FISCHER B M, et al. Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances[J]. Nature Communications, 2013, 4: 2706. doi: 10.1038/ncomms3706
    [48] 郜思衡, 杨宇, 毋金玲, 等. 氧化石墨烯/超细银粒子复合物的制备及其光电性能[J]. 应用化学,2020,37(8):923-929. doi: 10.11944/j.issn.1000-0518.2020.08.200034

    GAO S H, YANG Y, WU J L, et al. Preparation and photoelectric performance of graphene oxide/ultrafine silver composite[J]. Chinese Journal of Applied Chemistry, 2020, 37(8): 923-929. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.08.200034
    [49] 王艺晨, 罗静, 刘仁, 等. 石墨烯空心微球制备方法的研究进展[J]. 应用化学,2020,37(12):1374-1383. doi: 10.11944/j.issn.1000-0518.2020.12.200163

    WANG Y CH, LUO J, LIU R, et al. Progress in preparation of graphene hollow microspheres[J]. Chinese Journal of Applied Chemistry, 2020, 37(12): 1374-1383. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.12.200163
    [50] LI P N, TAUBNER T. Broadband subwavelength imaging using a tunable graphene-lens[J]. ACS Nano, 2012, 6(11): 10107-10114. doi: 10.1021/nn303845a
    [51] LI P N, WANG T, BÖCKMANN H, et al. Graphene-enhanced infrared near-field microscopy[J]. Nano Letters, 2014, 14(8): 4400-4405. doi: 10.1021/nl501376a
    [52] ANDRYIEUSKI A, LAVRINENKO A V, CHIGRIN D N. Graphene hyperlens for terahertz radiation[J]. Physical Review B, 2012, 86(12): 121108. doi: 10.1103/PhysRevB.86.121108
    [53] TANG H H, LIU P K. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform[J]. Optics Express, 2015, 23(18): 23613-23623. doi: 10.1364/OE.23.023613
    [54] TANG H H, HUANG T J, LIU J Y, et al. Tunable terahertz deep subwavelength imaging based on a graphene monolayer[J]. Scientific Reports, 2017, 7: 46283. doi: 10.1038/srep46283
    [55] JIANG X, CHEN H, LI Z Y, et al. All-dielectric metalens for terahertz wave imaging[J]. Optics Express, 2018, 26(11): 14132-14142. doi: 10.1364/OE.26.014132
    [56] YANG M Y, RUAN D SH, DU L H, et al. Subdiffraction focusing of total electric fields of terahertz wave[J]. Optics Communications, 2020, 458: 124764. doi: 10.1016/j.optcom.2019.124764
    [57] LI X, CHEN ZH G, TAFLOVE A, et al. Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets[J]. Optics Express, 2005, 13(2): 526-533. doi: 10.1364/OPEX.13.000526
    [58] PHAM H H N, HISATAKE S, MININ O V, et al. Enhancement of spatial resolution of terahertz imaging systems based on terajet generation by dielectric cube[J]. APL Photonics, 2017, 2(5): 056106. doi: 10.1063/1.4983114
    [59] 马晓茗, 姜在超, 屈庆山, 等. 基于喷射效应的太赫兹高分辨成像研究与进展[J]. 光电工程,2020,47(5):55-64.

    MA X M, JIANG Z CH, QU Q SH, et al. Research advances of high-resolution THz imaging based on terajet effect[J]. Opto-Electronic Engineering, 2020, 47(5): 55-64. (in Chinese)
    [60] 苏衡, 周杰, 张志浩. 超分辨率图像重建方法综述[J]. 自动化学报,2013,39(8):1202-1213.

    SU H, ZHOU J, ZHANG ZH H. Survey of super-resolution image reconstruction methods[J]. Acta Automatica Sinica, 2013, 39(8): 1202-1213. (in Chinese)
    [61] OOI Y K, IBRAHIM H. Deep learning algorithms for single image super-resolution: a systematic review[J]. Electronics, 2021, 10(7): 867. doi: 10.3390/electronics10070867
    [62] 南方哲, 钱育蓉, 行艳妮, 等. 基于深度学习的单图像超分辨率重建研究综述[J]. 计算机应用研究,2020,37(2):321-326.

    NAN F ZH, QIAN Y R, XING Y N, et al. Survey of single image super resolution based on deep learning[J]. Application Research of Computers, 2020, 37(2): 321-326. (in Chinese)
    [63] 郭佑东, 凌福日, 姚建铨. 基于梯度变换的太赫兹图像超分辨率重建[J]. 激光技术,2020,44(3):271-277.

    GUO Y D, LING F R, YAO J Q. Super-resolution reconstruction for terahertz images based on gradient transform[J]. Laser Technology, 2020, 44(3): 271-277. (in Chinese)
    [64] 邓承志, 田伟, 陈盼, 等. 基于局部约束群稀疏的红外图像超分辨率重建[J]. 物理学报,2014,63(4):044202. doi: 10.7498/aps.63.044202

    DENG CH ZH, TIAN W, CHEN P, et al. Infrared image super-resolution via locality-constrained group sparse model[J]. Acta Physica Sinica, 2014, 63(4): 044202. (in Chinese) doi: 10.7498/aps.63.044202
    [65] 邵保泰, 汤心溢, 金璐, 等. 基于生成对抗网络的单帧红外图像超分辨算法[J]. 红外与毫米波学报,2018,37(4):427-432. doi: 10.11972/j.issn.1001-9014.2018.04.009

    SHAO B T, TANG X Y, JIN L, et al. Single frame infrared image super-resolution algorithm based on generative adversarial nets[J]. Journal of Infrared and Millimeter Waves, 2018, 37(4): 427-432. (in Chinese) doi: 10.11972/j.issn.1001-9014.2018.04.009
    [66] 席志红, 侯彩燕, 袁昆鹏, 等. 基于深层残差网络的加速图像超分辨率重建[J]. 光学学报,2019,39(2):0210003. doi: 10.3788/AOS201939.0210003

    XI ZH H, HOU C Y, YUAN K P, et al. Super-resolution reconstruction of accelerated image based on deep residual network[J]. Acta Optica Sinica, 2019, 39(2): 0210003. (in Chinese) doi: 10.3788/AOS201939.0210003
    [67] 卢贺洋, 苏胜君, 袁明辉, 等. 太赫兹图像的超分辨率重建[J]. 红外技术,2019,41(1):59-63.

    LU H Y, SU SH J, YUAN M H, et al. Super-resolution reconstruction of terahertz images[J]. Infrared Technology, 2019, 41(1): 59-63. (in Chinese)
    [68] LI Y D, HU W D, ZHANG X, et al. Adaptive terahertz image super-resolution with adjustable convolutional neural network[J]. Optics Express, 2020, 28(15): 22200-22217. doi: 10.1364/OE.394943
    [69] 郭彤颖, 吴成东, 曲道奎. 小波变换理论应用进展[J]. 信息与控制,2004,33(1):67-71. doi: 10.3969/j.issn.1002-0411.2004.01.015

    GUO T Y, WU CH D, QU D K. Wavelet transform theory and its application progress: a review[J]. Information and Control, 2004, 33(1): 67-71. (in Chinese) doi: 10.3969/j.issn.1002-0411.2004.01.015
    [70] 代冰, 王朋, 周宇, 等. 小波变换在太赫兹三维成像探测内部缺陷中的应用[J]. 物理学报,2017,66(8):088701. doi: 10.7498/aps.66.088701

    DAI B, WANG P, ZHOU Y, et al. Wavelet transform in the application of three-dimensional terahertz imaging for internal defect detection[J]. Acta Physica Sinica, 2017, 66(8): 088701. (in Chinese) doi: 10.7498/aps.66.088701
    [71] 邓玉强, 郎利影, 邢岐荣, 等. Gabor小波分析太赫兹波时间-频率特性的研究[J]. 物理学报,2008,57(12):7747-7752. doi: 10.3321/j.issn:1000-3290.2008.12.054

    DENG Y Q, LANG L Y, XING Q R, et al. Terahertz time-frequency analysis with Gabor wavelet-transform[J]. Acta Physica Sinica, 2008, 57(12): 7747-7752. (in Chinese) doi: 10.3321/j.issn:1000-3290.2008.12.054
    [72] 陈龙旺, 孟阔, 张岩. 小波变换在太赫兹时域光谱分析中的应用[J]. 光谱学与光谱分析,2009,29(5):1168-1171. doi: 10.3964/j.issn.1000-0593(2009)05-1168-04

    CHEN L W, MENG K, ZHANG Y. Application of the wavelet transform in terahertz time-domain spectroscopy[J]. Spectroscopy and Spectral Analysis, 2009, 29(5): 1168-1171. (in Chinese) doi: 10.3964/j.issn.1000-0593(2009)05-1168-04
    [73] DAI B, WANG P, WANG T Y, et al. Improved terahertz nondestructive detection of debonds locating in layered structures based on wavelet transform[J]. Composite Structures, 2017, 168: 562-568. doi: 10.1016/j.compstruct.2016.10.118
    [74] ZHANG ZH R, LU Y, LV C X, et al. Restoration of integrated circuit terahertz image based on wavelet denoising technique and the point spread function model[J]. Optics and Lasers in Engineering, 2021, 138: 106413. doi: 10.1016/j.optlaseng.2020.106413
    [75] 张霁旸, 任姣姣, 陈思宏, 等. 小波去噪在太赫兹无损检测中的应用[J]. 中国激光,2020,47(1):0114001. doi: 10.3788/CJL202047.0114001

    ZHANG J Y, REN J J, CHEN S H, et al. Application of wavelet denoising in terahertz nondestructive detection[J]. Chinese Journal of Lasers, 2020, 47(1): 0114001. (in Chinese) doi: 10.3788/CJL202047.0114001
    [76] CHEN Y, HUANG SH Y, PICKWELL-MACPHERSON E. Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy[J]. Optics Express, 2010, 18(2): 1177-1190. doi: 10.1364/OE.18.001177
    [77] DONG J L, LOCQUET A, CITRIN D S. Terahertz quantitative nondestructive evaluation of failure modes in polymer-coated steel[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(4): 8400207.
    [78] DONG J L, WU X L, LOCQUET A, et al. Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution[J]. IEEE Transactions on Terahertz Science and Technology, 2017, 7(3): 260-267. doi: 10.1109/TTHZ.2017.2673542
    [79] 叶东东, 王卫泽, 周海婷, 等. 基于太赫兹技术的热障涂层平行裂纹监测研究[J]. 表面技术,2020,49(5):91-97.

    YE D D, WANG W Z, ZHOU H T, et al. Parallel crack monitoring of thermal barrier coatings based on terahertz technology[J]. Surface Technology, 2020, 49(5): 91-97. (in Chinese)
  • 加载中
图(11)
计量
  • 文章访问数:  1194
  • HTML全文浏览量:  411
  • PDF下载量:  355
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-12
  • 录用日期:  2022-01-21
  • 修回日期:  2021-12-13
  • 网络出版日期:  2022-01-27
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回