留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

手机嵌入式快照成像光谱仪的研制

田久谊

田久谊. 手机嵌入式快照成像光谱仪的研制[J]. 中国光学(中英文), 2022, 15(4): 770-779. doi: 10.37188/CO.2021-0209
引用本文: 田久谊. 手机嵌入式快照成像光谱仪的研制[J]. 中国光学(中英文), 2022, 15(4): 770-779. doi: 10.37188/CO.2021-0209
TIAN Jiu-yi. Snapshot imaging spectrometer for mobile phone[J]. Chinese Optics, 2022, 15(4): 770-779. doi: 10.37188/CO.2021-0209
Citation: TIAN Jiu-yi. Snapshot imaging spectrometer for mobile phone[J]. Chinese Optics, 2022, 15(4): 770-779. doi: 10.37188/CO.2021-0209

手机嵌入式快照成像光谱仪的研制

基金项目: 陕西省重点研发计划(产业创新链项目)(No. 2021ZDLGY12-05)
详细信息
    作者简介:

    田久谊(1979—),女,陕西西安人,学士,工程师,2001年于西安工业大学获得学士学位,主要从事多光谱成像、光电探测器件等方面的应用光学仪器研究。E-mail:jiuyi_tian@163.com

  • 中图分类号: O439

Snapshot imaging spectrometer for mobile phone

Funds: Supported by Key R&D Plan of Shaanxi Province (Industrial Innovation Chain Project) (No. 2021ZDLGY12-05)
More Information
  • 摘要:

    目前手机摄像头已经具备在空间(x-y方向)和深度(z方向)维度上获取成像信息的能力,而在光谱维度的信息获取上一直停留在RGB三色上,受困于手机平台的尺寸限制,传统的成像光谱仪很难嵌入。本文基于多通道阵列滤光片、微透镜阵列成像和一体化集成制造技术,完成了系统整体设计、关键部件设计制造、整体装配,并实验验证了光谱成像。系统整体物理尺寸小于Φ6×6 mm,光谱分辨率为8 nm,光谱范围为0.53~0.68 μm。实验研究表明,对不同颜色的实物成像,可以获得物体任意部位的光谱曲线,验证了快照式光谱仪的设计指标。该光谱仪具备了嵌入手机的基本条件,此研究有望推动成像光谱仪在手机上集成应用。

     

  • 图 1  阵列滤光片的光谱成像系统的基本结构

    Figure 1.  Basic structure of the spectral imaging system of an array filter

    图 2  阵列滤光片组件设计方法

    Figure 2.  Design method of the array filter assembly

    图 3  3×4通道滤光片理论透过率

    Figure 3.  Theoretical transmittance of 3×4 channel filter

    图 4  阵列滤光片的工艺路线

    Figure 4.  Process route of an array filter

    图 5  测试的12通道的光谱透过曲线

    Figure 5.  Spectral transmission test curve for the 3×4 channels

    图 6  微透镜阵列设计结果。(a)光线模拟图,单位mm;(b)3×4阵列透镜的空间位置关系;(c)模拟3×4 阵列像;(d)MTF曲线

    Figure 6.  Design results of the microlens array. (a) Simulation diagram of light tracing; (b) spatial position relationship of the 3×4 array lens; (c) simulated 3×4 array images; (d) MTF curves

    图 7  微透镜加工效果图。(a)表面形貌;(b)轮廓曲线

    Figure 7.  Processing effect of microlens. (a) Surface morphology; (b) contour curve

    图 8  (a)装配前及(b)装配后的快照式光谱相机

    Figure 8.  Snapshot spectral camera (a) before assembly and (b) after assembly

    图 9  实验测试结果。(a)光学布局;(b)绿色、(c)白色、(d)红色、(e)蓝色物体的光谱像

    Figure 9.  Experimental test results. (a) Optical layout; spectral images of a (b) blue, (c) white, (d) red and (e) blue object

    图 10  图9(b)所标点的光谱曲线(实线:微光纤光谱仪测试结果,虚线:成像光谱仪测试结果)

    Figure 10.  Spectral curve marked in Fig. 9 (b) (solid line: micro fiber spectrometer test results, dotted line: imaging spectrometer test results)

    表  1  CMOS的基本参数指标

    Table  1.   Basic parameters and indicators of CMOS

    芯片型号有效像素图像区域最低照度视频制式
    1/3 CMOS760(H)×586(V)4.8 mm×3.6 mm0.008 LxPAL/NTSC
    下载: 导出CSV

    表  2  滤光片性能对比

    Table  2.   Performance comparison of the filters

    序号光谱范围/nm通道个数半高宽/nm平均峰值透过率/%主要结构参考文献
    1470~62012~10~85介质高反/二氧化硅/介质高反[27]
    2722~8801281.72~3.84~45%介质高反/二氧化硅/介质高反[26]
    3415~7258~81~68.9Ag高反/ 光刻胶 /Ag高反[14]
    4400~8005~100~45Al 超表面[28]
    5460~6309~2771.2Ag高反/ 光刻胶 /Ag高反[14]
    6530~68012~883介质高反/二氧化硅/介质高反本工作
    下载: 导出CSV

    表  3  紫外胶合剂参数

    Table  3.   Parameters of the UV adhesive

    名称粘度
    25 °C
    固化后
    折射率
    拉伸极限弹性模量(PSI)抗拉强度(PSI)
    NOV61300 cps1.5638%1500003000
    下载: 导出CSV

    表  4  胶合基本工艺和参数

    Table  4.   Basic gluing process and parameters

    光源波长光功率密度预固化时间固化时间点胶设备
    365 nm700 mW/cm230 s>10 min尔谷光电(JZ04-365-04)
    下载: 导出CSV

    表  5  成像光谱仪技术指标对比

    Table  5.   Comparison of technical indexes of the imaging spectrometer

    序号结构光谱分辨率/nm时间分辨率整体尺寸/mm光谱图像获取方式报道时间/年参考文献
    1芯片滤光阵列10和CMOS芯片同步11.2×11.2,不带镜头直接获取2014[27]
    2子孔径复合阵列滤光片10计算重构原理样机平台搭建计算重建2019[31]
    3子孔径复合阵列滤光片50计算重构原理样机平台搭建计算重建2004[32]
    4芯片滤光阵列10和CMOS芯片同步实物样机
    约几十mm
    直接获取2019[33]
    5傅立叶变换成像光谱仪//原理设计计算重构2020[8]
    6芯片滤光阵列计算超分后5.2 nm计算重构原理样机平台搭建计算重构2021[22]
    7子孔径复合阵列滤光片8和CMOS芯片同步功能样机Φ6×6直接获取2022本工作
    下载: 导出CSV
  • [1] 张宏宇, 韩波, 王啸虎, 等. 资源一号02D卫星总体设计与技术特点[J]. 航天器工程,2020,29(6):10-18. doi: 10.3969/j.issn.1673-8748.2020.06.002

    ZHANG H Y, HAN B, WANG X H, et al. System design and technique characteristic of ZY-1-02D satellite[J]. Spacecraft Engineering, 2020, 29(6): 10-18. (in Chinese) doi: 10.3969/j.issn.1673-8748.2020.06.002
    [2] 李娜, 董新丰, 甘甫平, 等. 资源一号02D卫星高光谱数据地质调查应用评价[J]. 航天器工程,2020,29(6):186-191. doi: 10.3969/j.issn.1673-8748.2020.06.028

    LI N, DONG X F, GAN F P, et al. Application evaluation of ZY-1-02D satellite hyperspectral data in geological survey[J]. Spacecraft Engineering, 2020, 29(6): 186-191. (in Chinese) doi: 10.3969/j.issn.1673-8748.2020.06.028
    [3] 王启超, 赵大鹏, 汪家春, 等. 多光谱偏振探测对伪装目标的识别研究[J]. 光电工程,2013,40(3):29-34.

    WANG Q CH, ZHAO D P, WANG J CH, et al. Recognition of camouflage targets with multi-spectral polarization detection system[J]. Opto-Electronic Engineering, 2013, 40(3): 29-34. (in Chinese)
    [4] 吉海彦, 任占奇, 饶震红. 高光谱成像技术鉴别菠菜叶片农药残留种类[J]. 发光学报,2018,39(12):1778-1784. doi: 10.3788/fgxb20183912.1778

    JI H Y, REN ZH Q, RAO ZH H. Identification of pesticide residue types in spinach leaves based on hyperspectral imaging[J]. Chinese Journal of Luminescence, 2018, 39(12): 1778-1784. (in Chinese) doi: 10.3788/fgxb20183912.1778
    [5] 知科技. 华为P50 Pro摄像头评测: 所有领域的翘楚[EB/OL]. (2021-08-13). https://g.pconline.com.cn/jxwd/1440/14409689.html.

    ZHIKEJI. Huawei P50 Pro camera evaluation[EB/OL]. (2021-08-13). https://g.pconline.com.cn/jxwd/1440/14409689.html.
    [6] 北京知行锐景科技有限公司, 优质数码领域创作者. 华为P50 Pocket评测: 理工男搞起情调也是一把好手[EB/OL]. (2021-12-27). https://baijiahao.baidu.com/s?id=1720261076805066815&wfr=spider&for=pc.

    High quality digital field creator. Huawei P50 pocket evaluation[EB/OL]. (2021-12-27). https://baijiahao.baidu.com/s?id=1720261076805066815&wfr=spider&for=pc.
    [7] 刘子寒, 季轶群, 石荣宝, 等. 机载红外推扫成像光谱仪光学设计[J]. 红外与激光工程,2014,43(9):2941-2946. doi: 10.3969/j.issn.1007-2276.2014.09.028

    LIU Z H, JI Y Q, SHI R B, et al. Optical design of airborne infrared pushbroom imaging spectrometer[J]. Infrared and Laser Engineering, 2014, 43(9): 2941-2946. (in Chinese) doi: 10.3969/j.issn.1007-2276.2014.09.028
    [8] 吕金光, 梁静秋, 王维彪, 等. 微小型快照式傅里叶变换成像光谱仪的建模与分析[J]. 光学学报,2020,40(2):0230001. doi: 10.3788/AOS202040.0230001

    LÜ J G, LIANG J Q, WANG W B, et al. Modeling and analysis of miniature snapshot fourier-transform imaging spectrometer[J]. Acta Optica Sinica, 2020, 40(2): 0230001. (in Chinese) doi: 10.3788/AOS202040.0230001
    [9] 常凌颖, 张强, 邱跃洪. 宽谱段一体化AOTF成像光谱仪光学系统设计[J]. 光学学报,2021,41(7):0722002. doi: 10.3788/AOS202141.0722002

    CHANG L Y, ZHANG Q, QIU Y H. Design of optical system for broadband and integrated AOTF imaging spectrometer[J]. Acta Optica Sinica, 2021, 41(7): 0722002. (in Chinese) doi: 10.3788/AOS202141.0722002
    [10] 裴琳琳, 吕群波, 王建威, 等. 编码孔径成像光谱仪光学系统设计[J]. 物理学报,2014,63(21):210702. doi: 10.7498/aps.63.210702

    PEI L L, LÜ Q B, WANG J W, et al. Optical system design of the coded aperture imaging spectrometer[J]. Acta Physica Sinica, 2014, 63(21): 210702. (in Chinese) doi: 10.7498/aps.63.210702
    [11] 高泽东, 高洪兴, 朱院院, 等. 快照式光谱成像技术综述[J]. 光学 精密工程,2020,28(6):1323-1343. doi: 10.3788/OPE.20202806.1323

    GAO Z D, GAO H X, ZHU Y Y, et al. Review of snapshot spectral imaging technologies[J]. Optics and Precision Engineering, 2020, 28(6): 1323-1343. (in Chinese) doi: 10.3788/OPE.20202806.1323
    [12] 王飞, 余晓畅, 罗青伶, 等. 片上光谱成像系统研究进展及应用综述[J]. 激光与光电子学进展,2021,58(20):2000002.

    WANG F, YU X CH, LUO Q L, et al. Research progress and applications of spectral imaging system on chip[J]. Laser &Optoelectronics Progress, 2021, 58(20): 2000002. (in Chinese)
    [13] CHENG Z W, ZHAO Y H, ZHANG J H, et al. Generalized modular spectrometers combining a compact nanobeam microcavity and computational reconstruction[J]. ACS Photonics, 2022, 9(1): 74-81. doi: 10.1021/acsphotonics.1c00719
    [14] WILLIAMS C, GORDON G S D, WILKINSON T D, et al. Grayscale-to-color: scalable fabrication of custom multispectral filter arrays[J]. ACS Photonics, 2019, 6(12): 3132-3141. doi: 10.1021/acsphotonics.9b01196
    [15] 刘嘉楠, 崔继承, 尹禄, 等. 基于微透镜阵列的积分视场成像光谱仪前置成像系统分析与设计[J]. 光谱学与光谱分析,2018,38(10):3269-3272.

    LIU J N, CUI J CH, YIN L, et al. Analysis and design of pre-imaging system of integral field imaging spectrometer based on lenslet array[J]. Spectroscopy and Spectral Analysis, 2018, 38(10): 3269-3272. (in Chinese)
    [16] HUANG Y T, LI SH J, ZHANG J, et al. Research on surface quality difference of microlens array fabricated by fast tool servo cutting[J]. IEEE Photonics Journal, 2021, 13(2): 2500309.
    [17] HERRERO-BERMELLO A, LI J F, KHAZAEI M, et al. On-chip Fourier-transform spectrometers and machine learning: a new route to smart photonic sensors[J]. Optics Letters, 2019, 44(23): 5840-5843. doi: 10.1364/OL.44.005840
    [18] 余晓畅, 赵建村, 虞益挺. 像素级光学滤波-探测集成器件的研究进展[J]. 光学 精密工程,2019,27(5):999-1012. doi: 10.3788/OPE.20192705.0999

    YU X CH, ZHAO J C, YU Y T, et al. Research progress of pixel-level integrated devices for spectral imaging[J]. Optics and Precision on Engineering, 2019, 27(5): 999-1012. (in Chinese) doi: 10.3788/OPE.20192705.0999
    [19] DUAN Y B, CAI CH L, LIANG H F, et al. Design and preparation of a 6-channel fan-shaped integrated narrow-band filter in the mid-infrared band[J]. Coatings, 2019, 9(9): 567. doi: 10.3390/coatings9090567
    [20] 赵永强, 刘芯羽, 汤超龙. 光谱滤光片阵列进展[J]. 激光与光电子学进展,2020,57(19):190004.

    ZHAO Y Q, LIU X Y, TANG CH L. Progress in spectral filter array[J]. Laser &Optoelectronics Progress, 2020, 57(19): 190004. (in Chinese)
    [21] LEE H S, HWANG G W, SEONG T Y, et al. Design of mid-infrared filter array based on plasmonic metal nanodiscs array and its application to on-chip spectrometer[J]. Scientific Reports, 2021, 11(1): 12218. doi: 10.1038/s41598-021-91762-7
    [22] ZHANG W Y, SONG H Y, HE X, et al. Deeply learned broadband encoding stochastic hyperspectral imaging[J]. Light:Science &Applications, 2021, 10(1): 108.
    [23] LIU C C, SUN ZH J. Design and fabrication of a metallic irregular F-P filter array for a miniature spectrometer[J]. Applied Optics, 2021, 60(16): 4948-4953. doi: 10.1364/AO.424386
    [24] XIE Y Q, LIU CH Y, LIU SH, et al. Snapshot imaging spectrometer based on pixel-level filter array (PFA)[J]. Sensors, 2021, 21(7): 2289. doi: 10.3390/s21072289
    [25] 张袆袆. 基于阵列滤光片的红外多光谱相机研究[D]. 西安: 西安工业大学, 2021.

    ZHANG Y Y. Research on infrared multispectral camera based on array filter[D]. Xi’an: Xi’an Technological University, 2021. (in Chinese)
    [26] WANG S W, LI M, XIA C S, et al. 128 channels of integrated filter array rapidly fabricated by using the combinatorial deposition technique[J]. Applied Physics B, 2007, 88(2): 281-284. doi: 10.1007/s00340-007-2726-3
    [27] LAMBRECHTS A, GONZALEZ P, GEELEN B, et al.. A CMOS-compatible, integrated approach to hyper-and multispectral imaging[C]. Proceedings of 2014 IEEE International Electron Devices Meeting, IEEE, 2014: 10.5. 1-10.5. 4.
    [28] SHALTOUT A M, KIM J, BOLTASSEVA A, et al. Ultrathin and multicolour optical cavities with embedded metasurfaces[J]. Nature Communications, 2018, 9: 2673. doi: 10.1038/s41467-018-05034-6
    [29] 迟明波, 韩欣欣, 徐阳, 等. 宽谱段高分辨扫描光谱定标技术[J]. 中国光学,2020,13(2):249-257. doi: 10.3788/co.20201302.0249

    CHI M B, HAN X X, XU Y, et al. Broad band and high resolution scanning spectrum calibration technology[J]. Chinese Optics, 2020, 13(2): 249-257. (in Chinese) doi: 10.3788/co.20201302.0249
    [30] 杜丽丽, 刘李, 葛曙乐, 等. 红外甚高光谱分辨率探测仪高精度在轨光谱定标[J]. 红外与毫米波学报,2021,40(2):214-222. doi: 10.11972/j.issn.1001-9014.2021.02.012

    DU L L, LIU L, GE SH L, et al. High precision on-orbit spectral calibration of atmospheric infrared ultra-spectral sounder[J]. Journal of Infrared and Millimeter Waves, 2021, 40(2): 214-222. (in Chinese) doi: 10.11972/j.issn.1001-9014.2021.02.012
    [31] ZHANG Z X, CHANG J, REN H X, et al. Snapshot imaging spectrometer based on a microlens array[J]. Chinese Optics Letters, 2019, 17(1): 011101. doi: 10.3788/COL201917.011101
    [32] SHOGENJI R, KITAMURA Y, YAMADA K, et al. Multispectral imaging using compact compound optics[J]. Optics Express, 2004, 12(8): 1643-1655. doi: 10.1364/OPEX.12.001643
    [33] GEELEN B, JAYAPALA M, TACK N, et al. Low-complexity image processing for a high-throughput low-latency snapshot multispectral imager with integrated tiled filters[J]. Proceedings of SPIE, 2013, 8743: 87431E.
  • 加载中
图(10) / 表(5)
计量
  • 文章访问数:  897
  • HTML全文浏览量:  541
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-06
  • 修回日期:  2022-01-10
  • 网络出版日期:  2022-05-12

目录

    /

    返回文章
    返回