留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光纤法布里-珀罗干涉仪高温传感器研究进展

李爱武 单天奇 国旗 潘学鹏 刘善仁 陈超 于永森

李爱武, 单天奇, 国旗, 潘学鹏, 刘善仁, 陈超, 于永森. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文), 2022, 15(4): 609-624. doi: 10.37188/CO.2021-0219
引用本文: 李爱武, 单天奇, 国旗, 潘学鹏, 刘善仁, 陈超, 于永森. 光纤法布里-珀罗干涉仪高温传感器研究进展[J]. 中国光学(中英文), 2022, 15(4): 609-624. doi: 10.37188/CO.2021-0219
LI Ai-wu, SHAN Tian-qi, GUO Qi, PAN Xue-peng, LIU Shan-ren, CHEN Chao, YU Yong-sen. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. doi: 10.37188/CO.2021-0219
Citation: LI Ai-wu, SHAN Tian-qi, GUO Qi, PAN Xue-peng, LIU Shan-ren, CHEN Chao, YU Yong-sen. Research progress of optical fiber Fabry-Perot interferometer high temperature sensors[J]. Chinese Optics, 2022, 15(4): 609-624. doi: 10.37188/CO.2021-0219

光纤法布里-珀罗干涉仪高温传感器研究进展

基金项目: 国家自然科学基金项目(No. 91860140,No. 61874119,No. 61905244);吉林省科技发展规划项目(No. 20180201014GX)
详细信息
    作者简介:

    李爱武(1971—),女,吉林长春人,博士,副教授,硕士生导师,2005年于吉林大学获得博士学位,现为吉林大学电子科学与工程学院副教授,主要从事光纤传感方面的研究。E-mail:liaw@jlu.edu.cn

    单天奇(1997—),男,吉林长春人,硕士研究生,2019年于吉林大学获得学士学位,主要从事光纤传感方面的研究。E-mail:1750011737@qq.com

    于永森(1974—),男,吉林长春人,博士,教授,博士生导师,2005年于吉林大学获得博士学位,现为吉林大学电子科学与工程学院教授,主要从事光纤传感,激光微纳加工研究。E-mail:yuys@jlu.edu.cn

  • 中图分类号: TN253

Research progress of optical fiber Fabry-Perot interferometer high temperature sensors

Funds: Supported by National Natural Science Foundation of China (No. 91860140, No. 61874119, No. 61905244); Science and Technology Development Project of Jilin Province (No. 20180201014GX)
More Information
  • 摘要:

    光纤法布里-珀罗干涉仪高温传感器具有体积小、制作简单、灵敏度高、耐高温和抗电磁干扰等优点,广泛应用于航空航天、能源工业及环境监测等领域。本文首先介绍了光纤法布里-珀罗干涉仪高温传感器的传感原理、传感性能、传感特性和制备方法。然后对其温度、压力和应变的灵敏度和测量范围等特征参数进行了归纳。总结了光纤法布里-珀罗干涉仪高温传感器的国内外研究进展及性能参数。介绍了光纤法布里-珀罗干涉仪传感器温度和压力的交叉敏感问题及解决方法和基于不同种类光纤的法布里-珀罗干涉仪高温传感特性。针对近几年光纤法布里-珀罗干涉仪高温传感器的研究进展,介绍了多种用于双参数测量的光纤法布里-珀罗干涉仪高温传感器。最后对光纤法布里-珀罗干涉仪高温传感器的未来发展趋势和前景进行了展望。

     

  • 图 1  多光束干涉原理图

    Figure 1.  Schematic diagram of multi-beam interference

    图 2  典型的(a)IFPI、(b)EFPI和(c)ILFPI结构图

    Figure 2.  Structure diagrams of a typical (a) IFPI, (b) EFPI and (c) ILFPI

    图 3  (a)基于SF和蓝宝石晶片制备的无源EFPI高温传感器[75];(b)双SF和蓝宝石晶片制备的自滤波EFPI高温传感器[12]

    Figure 3.  (a) Sourceless EFPI high temperature sensor based on sapphire fiber and sapphire wafer[75]; (b) self-filtering EFPI high temperature sensor fabricated by double sapphire fiber and sapphire wafer[12]

    图 4  (a)基于SF和蓝宝石晶片制备的FPI高温传感器[34];(b)使用三层蓝宝石晶片直接键合制备的EFPI高温传感器[10]

    Figure 4.  (a) FPI high temperature sensor based on sapphire fiber and sapphire wafer[34]; (b) EFPI high temperature sensor fabricated by direct bonding of three-layer sapphire wafers[10]

    图 5  (a)使用SMF和HCF熔接制备的ILFPI传感器[68];(b)使用FBG和FPI级联制备的混合光纤传感器[83];(c)使用CDF制备的光纤FPI传感器[32]

    Figure 5.  (a) ILFPI sensor fabricated by fusion of SMF and HCF[68]; (b) hybrid fiber-optic sensor fabricated by cascade of FBG and FPI[83]; (c) fiber-optic FPI sensor fabricated by CDF[32]

    图 6  (a)使用FBG和HST插入石英套管制备的FPI传感器[51];(b)使用蓝宝石晶片直接键合制备的FPI传感器[5];(c)使用飞秒激光对SMF进行刻槽,然后通过抛光和熔接制备FPI[6]

    Figure 6.  (a) FPI sensor fabricated by inserting FBG and HST into quartz sleeve[51]; (b) FPI sensor fabricated by direct bonding of sapphire wafer[5]; (c) SMF grooved by femtosecond laser, then FPI fabricated by polishing and welding[6]

    图 7  光纤FPI高温加速传感器示意图[84]

    Figure 7.  Schematic diagram of optical fiber FPI high temperature acceleration sensors[84]

    图 8  具有悬臂梁的FPI高温振动传感器示意图[85]

    Figure 8.  Schematic diagram of FPI high temperature vibration sensors based on micro-cantilever beam[85]

    图 9  6H-SiC蓝宝石光纤高温振动传感器示意图[86]

    Figure 9.  Schematic diagram of 6H-SiC sapphire fiber vibration sensor[86]

    表  1  不同IFPI的参数对比

    Table  1.   Comparison of parameters of various IFPIs

    IFPI温度测量范围温度灵敏度应变/压力测量范围应变/压力灵敏度
    2009[16]25~600 °C68.6 pm/°C
    2010[17]23~1200 °C17.5 nm/°C(OPD)
    2011[18]200~1000 °C1.75×10−5 °C
    2012[19]25~1100 °C39.1 nm/°C(OPD)
    2013[20]24~1000 °C17.7 pm/°C
    2014[21]30~900 °C13.9 pm/°C
    2015[22]400~1000 °C40.7 pm/°C(OPD)
    2015[23]17~1200 °C10 pm/°C
    2018[24]25~1000 °C13.6 pm/°C
    2018[25]500~1000 °C18.6 pm/°C
    2018[26]20~1000 °C13.57 pm/°C
    2018[27]300~1200 °C15.61 pm/°C
    2019[28]100~1100 °C16.92 pm/°C
    2019[4]400~1100 °C15.88 pm/°C
    2019[29]400~1100 °C16.36 pm/°C0~2000 με1.06 pm/με
    2019[30]300~1200 °C15.68 pm/°C
    2019[31]0~1600 °C13.2 pm/°C(1200 °C)
    2019[32]32~1200 °C15.6 pm/°C0~3000 µε1.5 pm/µε(900 °C)
    2020[33]100~1000 °C15.34 pm/°C
    2020[14]15~1000 °C15.4 pm/°C0~2800 με1.04 pm/με
    2020[34]25~1550 °C32.5 pm/°C(1550 °C)
    2020[35]20~800 °C24.52 pm/°C
    2020[36]50~800 °C12.51 pm/°C(800 °C)
    2020[37]200~1200 °C15.42 pm/°C
    2020[38]23~1000 °C17.15 nm/°C(OPD)
    2020[39]400~1000 °C17.1 pm/°C
    注:表中在灵敏度后标注的OPD(Optical Path Difference)为光程差,是通过测量FPI的腔长变化来对外界环境参数进行传感。未进行标注的则是通过测量反射峰的漂移来对外界环境参数进行传感。
    下载: 导出CSV

    表  2  不同EFPI的参数对比

    Table  2.   Comparison of parameters of various EFPIs

    EFPI温度测量范围温度灵敏度应变/压力测量范围应变/压力灵敏度
    2005[40]230~1600 °C2.798 nm/°C
    2010[41]20~1050 °C20 pm/°C(OPD)
    2012[42]100~700 °C0.98 pm/°C0~800 με3.14 pm/με
    2013[43]20~700 °C4.44 pm/°C0~689.5 kPa0.28 pm/Pa
    2014[44]20~800 °C0.59 pm/°C0~3700 με1.5 pm/με
    2016[45]23~600 °C12.3 pm/°C0~2104 με1.74 pm/με
    2017[46]23~600 °C0.51 pm/°C0~3 MPa1.53 nm/MPa(600 °C)
    2017[47]23~1000 °C20.31 pm/°C
    2017[48]19~1000 °C14.68 pm/°C
    2017[49]20~900 °C0.044 pm/°C0.1~0.7 MPa1.14 nm/MPa(800 °C)
    2018[50]20~600 °C0.17 pm/°C0~1.0 MPa−5.912 nm/MPa(600 °C)
    2018[51]20~800 °C14.8 pm/°C0.1~0.7 MPa4.28 nm/MPa
    2018[15]20~800 °C19.8 nm/°C(OPD)0~10 MPa98 nm/MPa
    2019[12]100~1080 °C4.786 nm/°C(OPD)
    2019[52]100~800 °C14.31 pm/°C
    2019[53]20~1000 °C12.26 nm/°C
    2019[6]20~1000 °C108.11 pm/°C(OPD)0~10 MPa70.85 nm/MPa
    2019[5]20~800 °C1.25 nm/°C(OPD)20~700 kPa2.768 μm/MPa(OPD)
    2019[54]20~700 °C0.215 nm/°C0~500 kPa5.22 nm/MPa
    2019[55]20~1000 °C15.41 pm/°C0~1000 µε1.19 pm/µε(900 °C)
    2020[56]25~1000 °C0.77 pm/°C
    2020[10]-50~1200 °C23 pm/°C0.4~4.0 MPa1.2 nm/MPa(1200 °C)
    2020[11]23~1455 °C1.32 nm/°C(OPD)
    2020[57]100~800 °C10.74 pm/°C0~900 µε21.46 μm/µε(800 °C)
    2020[58]100~1000 °C18.01 pm/°C0~450 µε2.17 pm/µε(800 °C)
    2021[59]200~800 °C29.9 pm/°C
    下载: 导出CSV

    表  3  不同ILFPI的参数对比

    Table  3.   Comparison of parameters of various ILFPIs

    ILFPI温度测量范围温度灵敏度应变/压力测量范围应变/压力灵敏度
    2009[60]100~600 °C1.4 nm/°C0~400 με5.95 nm/µε
    2011[61]50~750 °C0.6 pm/°C0~950 με2.3 pm/με
    2011[62]25~700 °C13.7 pm/°C0~40 MPa−5.8 pm/MPa
    2015[63]0~700 °C0.45 pm/°C0~10 MPa54.7 pm/MPa
    2015[64]250~1050 °C1.019 nm/°C(1050 °C)
    2015[65]23~900 °C0.85 pm/°C0~1000 με13.9 pm/με
    2016[66]17~900 °C13.97 pm/°C0~600 με1.23 pm/με
    2018[67]100~800 °C17 nm/°C(OPD)0~10 MPa1.336 μm/MPa
    2018[68]0~1005 °C33.4 pm/°C0~1400 με0.46 pm/με
    2019[69]20~900 °C0.82 pm/°C0.3~2.7 MPa4.24 nm/MPa
    2019[70]24~1000 °C535.16 pm/°C
    2020[71]20~1000 °C0.64 pm/°C0~1000 με1.23 pm/με
    2020[72]100~1100 °C16.91 pm/°C0~2400 με1 pm/με
    2020[73]40~1000 °C25.3 nm/°C0~10 MPa356.5 nm/MPa(1000 °C)
    下载: 导出CSV

    表  4  FPI高温应变/压力传感器交叉灵敏度对比

    Table  4.   Comparison of cross-sensitivity of FPI high temperature strain/pressure sensors

    FPI温度灵敏度应变/压力灵敏度交叉灵敏度
    2011[61]0.6 pm/°C2.3 pm/με4 με/ °C
    2013[43]4.44 pm/°C0.28 pm/Pa15.86 Pa/ °C
    2015[65]0.85 pm/°C13.9 pm/με0.18 με/ °C
    2018[15]19.8 nm/°C(OPD)98 nm/MPa1490 Pa/ °C
    2018[67]17 nm/°C1.336 μm/MPa−15 Pa/ °C,0.3 °C/MPa
    2019[6]108.11 pm/°C(OPD)70.85 nm/MPa1525 Pa/ °C
    2019[55]0.215 nm/°C5.22 nm/MPa67.6 Pa/ °C
    2019[69]0.82 pm/°C4.24 nm/MPa192 Pa/ °C
    2020[10]23 pm/°C1.2 nm/MPa2×104 Pa/ °C
    下载: 导出CSV
  • [1] 王俊尧, 宋延嵩, 佟首峰, 等. 空间激光通信组网反射镜联动跟踪控制技术[J]. 中国光学,2020,13(3):537-546.

    WANG J Y, SONG Y S, TONG SH F, et al. Linkage tracking control technology of space laser communication network mirror[J]. Chinese Optics, 2020, 13(3): 537-546. (in Chinese)
    [2] 刘野, 刘宇, 肖辉东, 等. 638 nm光栅外腔窄线宽半导体激光器[J]. 中国光学,2020,13(6):1249-1256. doi: 10.37188/CO.2020-0249

    LIU Y, LIU Y, XIAO H D, et al. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. (in Chinese) doi: 10.37188/CO.2020-0249
    [3] 庞拂飞, 马章微, 刘奂奂, 等. 蓝宝石衍生光纤及传感器研究进展[J]. 应用科学学报,2018,36(1):59-74.

    PANG F F, MA ZH W, Liu H H, et al. Research progress of sapphire-derived fibers and sensors[J]. Journal of Applied Sciences, 2018, 36(1): 59-74. (in Chinese)
    [4] DENG J, WANG D N. Construction of cascaded Fabry–Perot interferometers by four in-fiber mirrors for high-temperature sensing[J]. Optics Letters, 2019, 44(5): 1289-1292. doi: 10.1364/OL.44.001289
    [5] LI W W, LIANG T, JIA P G, et al. Fiber-optic Fabry–Perot pressure sensor based on sapphire direct bonding for high-temperature applications[J]. Applied Optics, 2019, 58(7): 1662-1666. doi: 10.1364/AO.58.001662
    [6] MA W Y, JIANG Y, GAO H CH. Miniature all-fiber extrinsic Fabry–Pérot interferometric sensor for high-pressure sensing under high-temperature conditions[J]. Measurement Science and Technology, 2019, 30(2): 025104. doi: 10.1088/1361-6501/aaf905
    [7] 敬世美, 张轩宇, 梁居发, 等. 飞秒激光刻写的超短光纤布拉格光栅及其传感特性[J]. 中国光学,2017,10(4):449-454. doi: 10.3788/co.20171004.0449

    JING SH M, ZHANG X Y, LIANG J F, et al. Ultrashort fiber Bragg grating written by femtosecond laser and its sensing characteristics[J]. Chinese Optics, 2017, 10(4): 449-454. (in Chinese) doi: 10.3788/co.20171004.0449
    [8] 梁居发, 敬世美, 孟爱华, 等. 基于光纤布拉格光栅与长周期光栅并联的集成光学传感器[J]. 中国光学,2016,9(3):329-334. doi: 10.3788/co.20160903.0329

    LIANG J F, JING SH M, MENG A H, et al. Integrated optical sensor based on a FBG in parallel with a LPG[J]. Chinese Optics, 2016, 9(3): 329-334. (in Chinese) doi: 10.3788/co.20160903.0329
    [9] 明昕宇, 国旗, 薛兆康, 等. 飞秒激光刻写低温度灵敏度的细芯长周期光栅[J]. 中国光学,2020,13(4):737-744. doi: 10.37188/CO.2020-0015

    MING X Y, GUO Q, XUE ZH K, et al. A femtosecond laser-inscribed fine-core long-period grating with low temperature sensitivity[J]. Chinese Optics, 2020, 13(4): 737-744. (in Chinese) doi: 10.37188/CO.2020-0015
    [10] WANG Z, CHEN J, WEI H, et al. Sapphire Fabry-Perot interferometer for high-temperature pressure sensing[J]. Applied Optics, 2020, 59(17): 5189-5196. doi: 10.1364/AO.393353
    [11] YANG SH, FENG Z A, JIA X T, et al. All-sapphire miniature optical fiber tip sensor for high temperature measurement[J]. Journal of Lightwave Technology, 2020, 38(7): 1988-1997. doi: 10.1109/JLT.2019.2953156
    [12] YU X, WANG SH, JIANG J F, et al. Self-filtering high-resolution dual-sapphire-fiber-based high-temperature sensor[J]. Journal of Lightwave Technology, 2019, 37(4): 1408-1414. doi: 10.1109/JLT.2019.2894377
    [13] ZHANG X Y, YU Y S, ZHU C C, et al. Miniature end-capped fiber sensor for refractive index and temperature measurement[J]. IEEE Photonics Technology Letters, 2014, 26(1): 7-10. doi: 10.1109/LPT.2013.2286260
    [14] CUI X L, ZHANG H, WANG D N. Parallel structured optical fiber in-line Fabry-Perot interferometers for high temperature sensing[J]. Optics Letters, 2020, 45(3): 726-729. doi: 10.1364/OL.384594
    [15] GAO H CH, JIANG Y, CUI Y, et al. Dual-cavity fabry–perot interferometric sensors for the simultaneous measurement of high temperature and high pressure[J]. IEEE Sensors Journal, 2018, 18(24): 10028-10033. doi: 10.1109/JSEN.2018.2875435
    [16] DONG B, WEI L, ZHOU D P. Miniature high-sensitivity high-temperature fiber sensor with a dispersion compensation fiber-based interferometer[J]. Applied Optics, 2009, 48(33): 6466-6469. doi: 10.1364/AO.48.006466
    [17] ZHU T, KE T, RAO Y J, et al. Fabry–Perot optical fiber tip sensor for high temperature measurement[J]. Optics Communications, 2010, 283(19): 3683-3685. doi: 10.1016/j.optcom.2010.05.037
    [18] WANG J J, LALLY E M, DONG B, et al. Fabrication of a miniaturized thin-film temperature sensor on a sapphire fiber tip[J]. IEEE Sensors Journal, 2011, 11(12): 3406-3408. doi: 10.1109/JSEN.2011.2160340
    [19] XU L C, DENG M, DUAN D W, et al. High-temperature measurement by using a PCF-based Fabry-Perot interferometer[J]. Optics and Lasers in Engineering, 2012, 50(10): 1391-1396. doi: 10.1016/j.optlaseng.2012.05.012
    [20] TAN X L, GENG Y F, LI X J, et al. High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer[J]. Applied Optics, 2013, 52(34): 8195-8198. doi: 10.1364/AO.52.008195
    [21] DU Y Y, QIAO X G, RONG Q ZH, et al. A miniature Fabry-Pérot interferometer for high temperature measurement using a double-core photonic crystal fiber[J]. IEEE Sensors Journal, 2014, 14(4): 1069-1073. doi: 10.1109/JSEN.2013.2286699
    [22] LEE D, TIAN ZH P, DAI J X, et al. Sapphire fiber high-temperature tip sensor with multilayer coating[J]. IEEE Photonics Technology Letters, 2015, 27(7): 741-743. doi: 10.1109/LPT.2015.2390916
    [23] DING W H, JIANG Y, GAO R, et al. High-temperature fiber-optic Fabry-Perot interferometric sensors[J]. Review of Scientific Instruments, 2015, 86(5): 055001. doi: 10.1063/1.4919409
    [24] CHEN ZH SH, XIONG S S, GAO SH CH, et al. High-temperature sensor based on fabry-perot interferometer in microfiber tip[J]. Sensors, 2018, 18(1): 202.
    [25] CHEN P CH, SHU X W. Refractive-index-modified-dot Fabry-Perot fiber probe fabricated by femtosecond laser for high-temperature sensing[J]. Optics Express, 2018, 26(5): 5292-5299. doi: 10.1364/OE.26.005292
    [26] ZHANG P H, ZHANG L, MOURELATOS Z P, et al. Crystallization-sapphire-derived-fiber-based Fabry-Perot interferometer for refractive index and high-temperature measurement[J]. Applied Optics, 2018, 57(30): 9016-9021. doi: 10.1364/AO.57.009016
    [27] YU H H, WANG Y, MA J, et al. Fabry-Perot interferometric high-temperature sensing up to 1200 °C based on a silica glass photonic crystal fiber[J]. Sensors, 2018, 18(1): 273. doi: 10.3390/s18010273
    [28] DENG J, WANG D N, ZHANG H. Femtosecond laser inscribed multiple in-fiber reflection mirrors for high-temperature sensing[J]. Journal of Lightwave Technology, 2019, 37(21): 5537-5541. doi: 10.1109/JLT.2019.2935460
    [29] WANG Q H, ZHANG H, WANG D N. Cascaded multiple Fabry-Perot interferometers fabricated in no-core fiber with a waveguide for high-temperature sensing[J]. Optics Letters, 2019, 44(21): 5145-5148. doi: 10.1364/OL.44.005145
    [30] LEI X Q, DONG X P, Sensitivity-enhanced fiber interferometric high temperature sensor based on vernier effect[J]. Proceedings of SPIE, 2019, 11144: 1114405
    [31] LIU H, PANG F, HONG L, et al. Crystallization-induced refractive index modulation on sapphire-derived fiber for ultrahigh temperature sensing[J]. Optics Express, 2019, 27(5): 6201-6209. doi: 10.1364/OE.27.006201
    [32] WANG Z, LIU H, MA Z, et al. High temperature strain sensing with alumina ceramic derived fiber based Fabry-Perot interferometer[J]. Optics Express, 2019, 27(20): 27691-27701. doi: 10.1364/OE.27.027691
    [33] ZHANG G, WU X Q, LI SH L, et al. Miniaturized Fabry-Perot probe utilizing PMPCF for high temperature measurement[J]. Applied Optics, 2020, 59(3): 873-877. doi: 10.1364/AO.379092
    [34] WANG B T, NIU Y X, ZHENG SH W, et al. A high temperature sensor based on sapphire fiber Fabry-Perot interferometer[J]. IEEE Photonics Technology Letters, 2020, 32(2): 89-92. doi: 10.1109/LPT.2019.2957917
    [35] LEI J CH, ZHANG Q, SONG Y, et al. Laser-assisted embedding of all-glass optical fiber sensors into bulk ceramics for high-temperature applications[J]. Optics &Laser Technology, 2020, 128: 106223.
    [36] SU H Y, ZHANG Y D, MA K, et al. Tip packaged high-temperature miniature sensor based on suspended core optical fiber[J]. Journal of Lightwave Technology, 2020, 38(15): 4160-4165.
    [37] LEI X Q, DONG X P. High-sensitivity Fabry–Perot interferometer high-temperature fiber sensor based on vernier effect[J]. IEEE Sensors Journal, 2020, 20(10): 5292-5297. doi: 10.1109/JSEN.2020.2970579
    [38] WANG M H, YANG Y, HUANG S, et al. Multiplexable high-temperature stable and low-loss intrinsic Fabry-Perot in-fiber sensors through nanograting engineering[J]. Optics Express, 2020, 28(14): 20225-20235. doi: 10.1364/OE.395382
    [39] NIU Y D, WANG D N, WANG Q H, et al. Cascaded multiple Fabry–Perot interferometers fabricated in multimode fiber with a waveguide[J]. Optical Fiber Technology, 2020, 58: 102306. doi: 10.1016/j.yofte.2020.102306
    [40] ZHU Y ZH, HUANG ZH Y, SHEN F B, et al. Sapphire-fiber-based white-light interferometric sensor for high-temperature measurements[J]. Optics Letters, 2005, 30(7): 711-713. doi: 10.1364/OL.30.000711
    [41] KOU J L, FENG J, YE L, et al. Miniaturized fiber taper reflective interferometer for high temperature measurement[J]. Optics Express, 2010, 18(13): 14245-14250. doi: 10.1364/OE.18.014245
    [42] TAFULO P A R, JORGE P A S, SANTOS J L, et al. Fabry–Pérot cavities based on chemical etching for high temperature and strain measurement[J]. Optics Communications, 2012, 285(6): 1159-1162. doi: 10.1016/j.optcom.2011.11.097
    [43] ZHANG Y N, YUAN L, LAN X W, et al. High-temperature fiber-optic Fabry-Perot interferometric pressure sensor fabricated by femtosecond laser[J]. Optics Letters, 2013, 38(22): 4609-4612. doi: 10.1364/OL.38.004609
    [44] KAUR A, WATKINS S E, HUANG J, et al. Microcavity strain sensor for high temperature applications[J]. Optical Engineering, 2014, 53(1): 017105. doi: 10.1117/1.OE.53.1.017105
    [45] JIANG Y J, YANG D X, YUAN Y, et al. Strain and high-temperature discrimination using a type II fiber Bragg grating and a miniature fiber Fabry-Perot interferometer[J]. Applied Optics, 2016, 55(23): 6341-6345. doi: 10.1364/AO.55.006341
    [46] WANG Y C, BAO H H, RAN Z L, et al. Integrated FP/RFBG sensor with a micro-channel for dual-parameter measurement under high temperature[J]. Applied Optics, 2017, 56(15): 4250-4254. doi: 10.1364/AO.56.004250
    [47] LIU SH H, TIAN J, WANG SH, et al. Anti-resonant reflecting guidance in silica tube for high temperature sensing[J]. IEEE Photonics Technology Letters, 2017, 29(23): 2135-2138. doi: 10.1109/LPT.2017.2768433
    [48] LIU ZH W, QIAO X G, WANG R H. Miniaturized fiber-taper-based Fabry-Perot interferometer for high-temperature sensing[J]. Applied Optics, 2017, 56(2): 256-259. doi: 10.1364/AO.56.000256
    [49] JIA P G, FANG G CH, LIANG T, et al. Temperature-compensated fiber-optic Fabry–Perot interferometric gas refractive-index sensor based on hollow silica tube for high-temperature application[J]. Sensors and Actuators B:Chemical, 2017, 244: 226-232. doi: 10.1016/j.snb.2016.12.123
    [50] LI Z, JIA P G, FANG G CH, et al. Microbubble-based fiber-optic Fabry-Perot pressure sensor for high-temperature application[J]. Applied Optics, 2018, 57(8): 1738-1743. doi: 10.1364/AO.57.001738
    [51] LIANG H, JIA P G, LIU J, et al. Diaphragm-free Fiber-Optic fabry-perot interferometric gas pressure sensor for high temperature application[J]. Sensors, 2018, 18(4): 1011. doi: 10.3390/s18041011
    [52] ZHAO L, ZHANG Y D, CHEN Y H, et al. Composite cavity fiber tip Fabry-Perot interferometer for high temperature sensing[J]. Optical Fiber Technology, 2019, 50: 31-35. doi: 10.1016/j.yofte.2019.01.027
    [53] ZHU CH, ZHUANG Y Y, ZHANG B H, et al. A miniaturized optical fiber tip high-temperature sensor based on concave-shaped Fabry-Perot cavity[J]. IEEE Photonics Technology Letters, 2019, 31(1): 35-38. doi: 10.1109/LPT.2018.2881721
    [54] ZHANG Q, LEI J CH, CHEN Y ZH, et al. 3D printing of all-glass fiber-optic pressure sensor for high temperature applications[J]. IEEE Sensors Journal, 2019, 19(23): 11242-11246. doi: 10.1109/JSEN.2019.2935689
    [55] ZHANG P H, ZHANG L, WANG ZH Y, et al. Sapphire derived fiber based Fabry-Perot interferometer with an etched micro air cavity for strain measurement at high temperatures[J]. Optics Express, 2019, 27(19): 27112-27123. doi: 10.1364/OE.27.027112
    [56] ZHANG F ZH, ZHAO N, LIN Q J, et al. The influence of key characteristic parameters on performance of optical fiber Fabry-Perot temperature sensor[J]. AIP Advances, 2020, 10(8): 085118. doi: 10.1063/5.0005151
    [57] NAN J, ZHANG D SH, WEN X Y, et al. Elimination of thermal strain interference in mechanical strain measurement at high temperature using an EFPI-RFBG hybrid sensor with unlimited cavity length[J]. IEEE Sensors Journal, 2020, 20(10): 5270-5276. doi: 10.1109/JSEN.2020.2969431
    [58] TIAN Q, XIN G G, LIM K S, et al. Cascaded Fabry-Perot interferometer-regenerated fiber Bragg grating structure for temperature-strain measurement under extreme temperature conditions[J]. Optics Express, 2020, 28(21): 30478-30488. doi: 10.1364/OE.403716
    [59] LYU D J, PENG J K, HUANG Q, et al. Radiation-resistant optical fiber Fabry-Perot interferometer used for high-temperature sensing[J]. IEEE Sensors Journal, 2021, 21(1): 57-61. doi: 10.1109/JSEN.2020.2972702
    [60] RAO Y J, DENG M, ZHU T, et al. In-line Fabry–Perot etalons based on hollow-corephotonic bandgap fibers for high-temperature applications[J]. Journal of Lightwave Technology, 2009, 27(19): 4360-4365. doi: 10.1109/JLT.2009.2023924
    [61] DENG M, TANG CH P, ZHU T, et al. PCF-based Fabry–Pérot interferometric sensor for strain measurement at high temperatures[J]. IEEE Photonics Technology Letters, 2011, 23(11): 700-702. doi: 10.1109/LPT.2011.2124452
    [62] WU CH, FU H Y, QURESHI K K, et al. High-pressure and high-temperature characteristics of a Fabry–Perot interferometer based on photonic crystal fiber[J]. Optics Letters, 2011, 36(3): 412-414. doi: 10.1364/OL.36.000412
    [63] RAN Z L, LIU SH, LIU Q, et al. Novel high-temperature fiber-optic pressure sensor based on etched PCF F-P interferometer micromachined by a 157-nm laser[J]. IEEE Sensors Journal, 2015, 15(7): 3955-3958. doi: 10.1109/JSEN.2014.2371243
    [64] ZHANG P, TANG M, GAO F, et al. Simplified hollow-core fiber-based Fabry–Perot interferometer with modified vernier effect for highly sensitive high-temperature measurement[J]. IEEE Photonics Journal, 2015, 7(1): 7100210.
    [65] FERREIRA M S, RORIZ P, BIERLICH J, et al. Fabry-Perot cavity based on silica tube for strain sensing at high temperatures[J]. Optics Express, 2015, 23(12): 16063-16070. doi: 10.1364/OE.23.016063
    [66] LIU H, YANG H ZH, QIAO X G, et al. Strain measurement at high temperature environment based on Fabry-Perot interferometer cascaded fiber regeneration grating[J]. Sensors and Actuators A:Physical, 2016, 248: 199-205. doi: 10.1016/j.sna.2016.07.028
    [67] ZHANG ZH, HE J, DU B, et al. Measurement of high pressure and high temperature using a dual-cavity Fabry-Perot interferometer created in cascade hollow-core fibers[J]. Optics Letters, 2018, 43(24): 6009-6012. doi: 10.1364/OL.43.006009
    [68] LIU D J, WU Q, MEI CH, et al. Hollow core fiber based interferometer for high-temperature (1000 °C) measurement[J]. Journal of Lightwave Technology, 2018, 36(9): 1583-1590. doi: 10.1109/JLT.2017.2784544
    [69] HE H Y, LIU Y, LIAO Y Y, et al. Simple fiber-optic sensor for simultaneous and sensitive measurement of high pressure and high temperature based on the silica capillary tube[J]. Optics Express, 2019, 27(18): 25777-25788. doi: 10.1364/OE.27.025777
    [70] ZHANG G, WU X Q, ZHANG W J, et al. High temperature Vernier probe utilizing photonic crystal fiber-based Fabry-Perot interferometers[J]. Optics Express, 2019, 27(26): 37308-37317. doi: 10.1364/OE.27.037308
    [71] TIAN Q, YANG H ZH, LIM K S, et al. Temperature and strain response of in-fiber air-cavity Fabry-Perot interferometer under extreme temperature condition[J]. Optik, 2020, 220: 165034. doi: 10.1016/j.ijleo.2020.165034
    [72] ZHANG H, WANG D N, RAHMAN B M A. Parallel structured fiber in-line multiple Fabry-Perot cavities for high temperature sensing[J]. Sensors and Actuators A:Physical, 2020, 313: 112214. doi: 10.1016/j.sna.2020.112214
    [73] CUI Y, JIANG Y, LIU T M, et al. A dual-cavity Fabry–Perot interferometric fiber-optic sensor for the simultaneous measurement of high-temperature and high-gas-pressure[J]. IEEE Access, 2020, 8: 80582-80587. doi: 10.1109/ACCESS.2020.2991551
    [74] YI J, LALLY E, WANG A B, et al. Demonstration of an all-sapphire Fabry–Pérot cavity for pressure sensing[J]. IEEE Photonics Technology Letters, 2010, 23(1): 9-11.
    [75] TIAN ZH P, YU ZH H, LIU B, et al. Sourceless optical fiber high temperature sensor[J]. Optics Letters, 2016, 41(2): 195-198. doi: 10.1364/OL.41.000195
    [76] DRAGIC P, HAWKINS T, FOY P, et al. Sapphire-derived all-glass optical fibres[J]. Nature Photonics, 2012, 6(9): 627-633. doi: 10.1038/nphoton.2012.182
    [77] 李自亮, 廖常锐, 刘申, 等. 光纤法布里-珀罗干涉温度压力传感技术研究进展[J]. 物理学报,2017,66(7):070708. doi: 10.7498/aps.66.070708

    LI Z L, LIAO CH R, LIU SH, et al. Research progress of in-fiber Fabry-Perot interferometric temperature and pressure sensors[J]. Acta Physica Sinica, 2017, 66(7): 070708. (in Chinese) doi: 10.7498/aps.66.070708
    [78] 陈伟民, 雷小华, 张伟, 等. 光纤法布里-珀罗传感器研究进展[J]. 光学学报,2018,38(3):132-145.

    CHEN W M, LEI X H, ZHANG W, et al. Recent progress of optical fiber Fabry-Perot sensors[J]. Acta Optica Sinica, 2018, 38(3): 132-145. (in Chinese)
    [79] 朱永, 符欲梅, 陈伟民, 等. 大佛寺长江大桥健康监测系统[J]. 土木工程学报,2005,38(10):66-71.

    ZHU Y, FU Y M, CHEN W M, et al. A health monitoring system for the Dafosi Yangtze River bridge[J]. China Civil Engineering Journal, 2005, 38(10): 66-71. (in Chinese)
    [80] 梁大开, 李东升, 潘晓文, 等. 基于法珀腔光纤传感器的光纤智能夹层的研究[J]. 仪器仪表学报,2005,26(S1):226-228.

    LIANG D K, LI D SH, PAN X W, et al. Study of fiber-optic smart layer system based on Fabry-Perot strain sensor[J]. Chinese Journal of Scientific Instrument, 2005, 26(S1): 226-228. (in Chinese)
    [81] 单宁, 史仪凯, 刘霞. 光纤法-珀传感器在飞机发动机叶片裂纹检测中的应用[J]. 无损检测,2009,31(3):206-207,216.

    SHAN N, SHI Y K, LIU X. Detecting crack of aircraft engine blade based on optical fiber F-P sensor[J]. Nondestructive Testing, 2009, 31(3): 206-207,216. (in Chinese)
    [82] FUSIEK G, NIEWCZAS P, BURT G M. Preliminary evaluation of a high-pressure hightemperature downhole optical sensor[C]. Proceedings of the SENSORS, 2011 IEEE, IEEE, 2011: 409-412.
    [83] YANG T T, HE X, RAN Z L, et al. Highly integrated all-fiber FP/FBG sensor for accurate measurement of strain under high temperature[J]. Materials, 2018, 11(10): 1867. doi: 10.3390/ma11101867
    [84] ZHOU CH R, TONG X L, MAO Y, et al. Study on a high-temperature optical fiber F–P acceleration sensing system based on MEMS[J]. Optics and Lasers in Engineering, 2019, 120: 95-100. doi: 10.1016/j.optlaseng.2019.03.002
    [85] MA W Y, JIANG Y, ZHANG H, et al. Miniature on-fiber extrinsic Fabry-Perot interferometric vibration sensors based on micro-cantilever beam[J]. Nanotechnology Reviews, 2019, 8(1): 293-298. doi: 10.1515/ntrev-2019-0028
    [86] HUANG Y G, TANG F, MA D W, et al. Design, fabrication, characterization, and application of an ultra-high temperature 6H-SiC sapphire fiber optic vibration sensor[J]. IEEE Photonics Journal, 2019, 11(5): 6802512.
    [87] FENG R, CHU Y, LIU ZH J, et al. Study on high temperature resistant packaging of ultra high temperature Fabry–Perot optical fibre vibration sensor[J]. IEEE Sensors Journal, 2021, 21(23): 27045-27050. doi: 10.1109/JSEN.2021.3117960
    [88] 梁海来. 全光纤FPI型低频振动传感器的设计与实验[D]. 重庆: 重庆大学, 2017.

    LIANG H L. Design and experiment of all-fiber low-frequency vibration sensor based on FPI[D]. Chongqing: Chongqing University, 2017.
  • 加载中
图(9) / 表(4)
计量
  • 文章访问数:  2428
  • HTML全文浏览量:  1093
  • PDF下载量:  709
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-01-10
  • 录用日期:  2022-03-23
  • 网络出版日期:  2022-04-27

目录

    /

    返回文章
    返回