留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

逐像素调制的高反光表面三维测量方法

冯维 徐仕楠 王恒辉 熊芝 王选择 翟中生

冯维, 徐仕楠, 王恒辉, 熊芝, 王选择, 翟中生. 逐像素调制的高反光表面三维测量方法[J]. 中国光学(中英文), 2022, 15(3): 488-497. doi: 10.37188/CO.2021-0220
引用本文: 冯维, 徐仕楠, 王恒辉, 熊芝, 王选择, 翟中生. 逐像素调制的高反光表面三维测量方法[J]. 中国光学(中英文), 2022, 15(3): 488-497. doi: 10.37188/CO.2021-0220
FENG Wei, XU Shi-nan, WANG Heng-hui, XIONG Zhi, WANG Xuan-ze, ZHAI Zhong-sheng. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. doi: 10.37188/CO.2021-0220
Citation: FENG Wei, XU Shi-nan, WANG Heng-hui, XIONG Zhi, WANG Xuan-ze, ZHAI Zhong-sheng. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. doi: 10.37188/CO.2021-0220

逐像素调制的高反光表面三维测量方法

基金项目: 国家自然科学基金(No. 51805153)
详细信息
    作者简介:

    冯 维(1988—),男,湖北黄梅人,副教授,2011年、2014年于湖北工业大学分别获得学士、硕士学位,2018年于天津大学获得博士学位,主要从事光学三维测量与计算成像方面的研究。E-mail:fengwei@hbut.edu.cn

    徐仕楠(1997—),男,湖北咸宁人,湖北工业大学硕士研究生,2019年于湖北工业大学获得学士学位,主要从事光学三维测量方面的研究。E-mail:101900018@hbut.edu.cn

  • 中图分类号: TH741

Three-dimensional measurement method of highly reflective surface based on per-pixel modulation

Funds: Supported by National Natural Science Foundation of China (No. 51805153)
More Information
  • 摘要: 高反光表面的三维面形测量是光学三维测量领域的难题之一,本文提出一种基于逐像素调制的高反光表面三维测量方法,可解决光学三维测量中因过度曝光而导致的相位信息无法获取的问题。首先,通过投影最大灰度值的灰度图识别饱和像素点的位置;然后,依据投影低灰度下横纵条纹图进行过饱和区域坐标匹配,并结合一种新的相机-投影仪强度映射关系,逐像素求解过饱和像素点的最佳投影灰度值;最后,投影重新生成自适应条纹投影序列,并结合多频外差相移法用于相位恢复和三维重建。实验结果表明:所提方法的间距平均误差和标准偏差均小于文中其他方法所得的测量值,相对于传统方法,该方法的平均误差减少了61.9%,标准偏差减少了67.7%。本文所提方法的调制度高,速度快,能保证很高的测量精度。

     

  • 图 1  自适应条纹三维测量方法流程图

    Figure 1.  Flow chart of adaptive fringe 3D measurement method

    图 2  测量系统的坐标系示意图

    Figure 2.  Schematic diagram of coordinate of measurement system

    图 3  被测表面反射光的组成

    Figure 3.  Composition of reflected light from the measured surface

    图 4  4邻域匹配法

    Figure 4.  Matching method based on 4 neighborhoods

    图 5  三维测量系统实验平台

    Figure 5.  Experimental platform of 3D measurement system

    图 6  阈值分割效果图

    Figure 6.  Threshold segmentation graph

    图 7  相位展开流程图

    Figure 7.  Flow chart of phase unwrapping

    图 8  自适应投影条纹图

    Figure 8.  Adaptive projection fringe image

    图 9  (a)传统方法及(b)本文方法三维重建结果

    Figure 9.  3D reconstruction results obtained by (a) traditional method and (b) the proposed method

    图 10  不同方法的三维重建结果

    Figure 10.  Experimental results of 3D reconstruction with different methods

    表  1  本文方法与现有方法的误差检测结果

    Table  1.   Comparison of error detection results between the proposed method and existing methods

    方法过饱和像素点个数有效补偿率RMSE
    传统方法[24]10375604.3256
    Wei方法[21]135698.69%0.044
    Chen方法[22]102399.01%0.036
    本文方法85699.17%0.023
    下载: 导出CSV

    表  2  本文方法与现有方法的误差对比分析

    Table  2.   Error analysis comparison between the proposed method and existing methods (mm)

    方法最大间距最小间距平均误差标准偏差
    传统方法[24]20.2119.780.210.31
    Wei方法[21]20.1419.840.150.21
    Chen方法[22]20.1219.860.130.18
    本文方法20.0819.920.080.10
    下载: 导出CSV
  • [1] 张宗华, 于瑾, 高楠, 等. 高反光表面三维形貌测量技术[J]. 红外与激光工程,2020,49(3):0303006. doi: 10.3788/IRLA202049.0303006

    ZHANG Z H, YU J, GAO N, et al. Three-dimensional shape measurement techniques of shiny surfaces[J]. Infrared and Laser Engineering, 2020, 49(3): 0303006. (in Chinese) doi: 10.3788/IRLA202049.0303006
    [2] 曹智睿, 董吉洪. 结构光编码测量技术在火星高分相机中的应用[J]. 光学 精密工程,2021,29(6):1420-1429. doi: 10.37188/OPE.20212906.1420

    CAO ZH R, DONG J H. Application of structured light coding measurement technology in Mars high-resolution camera[J]. Optics and Precision Engineering, 2021, 29(6): 1420-1429. (in Chinese) doi: 10.37188/OPE.20212906.1420
    [3] 张宗华, 郭佼, 王月敏, 等. 镜面物体三维测量系统中两显示屏的平行正对校正[J]. 光学 精密工程,2017,25(2):289-296. doi: 10.3788/OPE.20172502.0289

    ZHANG Z H, GUO J, WANG Y M, et al. Parallel-alignment and correction of two displays in three-dimensional measuring system of specular surfaces[J]. Optics and Precision Engineering, 2017, 25(2): 289-296. (in Chinese) doi: 10.3788/OPE.20172502.0289
    [4] 王永红, 张倩, 胡寅, 等. 显微条纹投影小视场三维表面成像技术综述[J]. 中国光学,2021,14(3):447-457. doi: 10.37188/CO.2020-0199

    WANG Y H, ZHANG Q, HU Y, et al. 3D small-field surface imaging based on microscopic fringe projection profilometry: a review[J]. Chinese Optics, 2021, 14(3): 447-457. (in Chinese) doi: 10.37188/CO.2020-0199
    [5] 马国庆, 刘丽, 于正林, 等. 大型复杂曲面三维形貌测量及应用研究进展[J]. 中国光学,2019,12(2):214-228. doi: 10.3788/co.20191202.0214

    MA G Q, LIU L, YU ZH L, et al. Application and development of three-dimensional profile measurement for large and complex surface[J]. Chinese Optics, 2019, 12(2): 214-228. (in Chinese) doi: 10.3788/co.20191202.0214
    [6] 陈新禹, 孙非, 傅莉, 等. 相移光栅轮廓术的便携式三维测量系统[J]. 光学 精密工程,2015,23(10):106-112.

    CHEN X Y, SUN F, FU L, et al. Phase shifting fringe profilometry based portable 3D measurement system[J]. Optics and Precision Engineering, 2015, 23(10): 106-112. (in Chinese)
    [7] 冯维, 汤少靖, 赵晓冬, 等. 基于自适应条纹的高反光表面三维面形测量方法[J]. 光学学报,2020,40(5):113-121.

    FENG W, TANG SH J, ZHAO X D, et al. Three-dimensional shape measurement method of high-reflective surfaces based on adaptive fringe-pattern[J]. Acta Optica Sinica, 2020, 40(5): 113-121. (in Chinese)
    [8] FENG SH J, ZHANG Y ZH, CHEN Q, et al. General solution for high dynamic range three-dimensional shape measurement using the fringe projection technique[J]. Optics and Lasers in Engineering, 2014, 59: 56-71. doi: 10.1016/j.optlaseng.2014.03.003
    [9] ZHENG Y, WANG Y J, SURESH V, et al. Real-time high-dynamic-range fringe acquisition for 3D shape measurement with a RGB camera[J]. Measurement Science and Technology, 2019, 30(7): 075202. doi: 10.1088/1361-6501/ab0ced
    [10] LIANG R G. Short wavelength and polarized phase shifting fringe projection imaging of translucent objects[J]. Optical Engineering, 2014, 53(1): 014104. doi: 10.1117/1.OE.53.1.014104
    [11] 郝婧蕾, 赵永强, 赵海盟, 等. 偏振多光谱机器视觉的高反光无纹理目标三维重构方法[J]. 测绘学报,2018,47(6):816-824. doi: 10.11947/j.AGCS.2018.20170624

    HAO J L, ZHAO Y Q, ZHAO H M, et al. 3D reconstruction of high-reflective and textureless targets based on multispectral polarization and machine vision[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(6): 816-824. (in Chinese) doi: 10.11947/j.AGCS.2018.20170624
    [12] WANG J H, ZHOU Y G, YANG Y X. A novel and fast three-dimensional measurement technology for the objects surface with non-uniform reflection[J]. Results in Physics, 2020, 16: 102878. doi: 10.1016/j.rinp.2019.102878
    [13] RAO L, DA F P. High dynamic range 3D shape determination based on automatic exposure selection[J]. Journal of Visual Communication and Image Representation, 2017, 50: 217-226.
    [14] LIU Y ZH, FU Y J, CAI X Q, et al. A novel high dynamic range 3D measurement method based on adaptive fringe projection technique[J]. Optics and Lasers in Engineering, 2020, 128: 106004. doi: 10.1016/j.optlaseng.2020.106004
    [15] ZHAO X X, MO R, CHANG ZH Y, et al. 3D-design-model-assisted shiny surface shape measurement in fringe projection profilometry[J]. Measurement Science and Technology, 2021, 32(3): 035019. doi: 10.1088/1361-6501/abcc16
    [16] LIU Y ZH, FU Y J, ZHUAN Y H, et al. High dynamic range real-time 3D measurement based on Fourier transform profilometry[J]. Optics &Laser Technology, 2021, 138: 106833.
    [17] LIN H, HAN ZH Q. Automatic optimal projected light intensity control for digital fringe projection technique[J]. Optics Communications, 2021, 484: 126574. doi: 10.1016/j.optcom.2020.126574
    [18] XU J, ZHANG S. Status, challenges, and future perspectives of fringe projection profilometry[J]. Optics and Lasers in Engineering, 2020, 135: 106193. doi: 10.1016/j.optlaseng.2020.106193
    [19] ZHANG S. Rapid and automatic optimal exposure control for digital fringe projection technique[J]. Optics and Lasers in Engineering, 2020, 128: 106029. doi: 10.1016/j.optlaseng.2020.106029
    [20] RIVIERE J, RESHETOUSKI I, FILIPI L, et al. Polarization imaging reflectometry in the wild[J]. ACM Transactions on Graphics, 2017, 36(6): 206.
    [21] WEI Y F, LU L, XI J T, et al. 3D shape measurement of shiny surfaces based on optimized combination of fringe patterns of different intensity[J]. Measurement Science and Technology, 2021, 32(3): 035203. doi: 10.1088/1361-6501/abc49d
    [22] CHEN C, GAO N, WANG X J, et al. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement[J]. Optics Communications, 2018, 410: 694-702. doi: 10.1016/j.optcom.2017.11.009
    [23] LIU X H, HUANG SH J, ZHANG Z H, et al. Full-field calibration of color camera chromatic aberration using absolute phase maps[J]. Sensors, 2017, 17(5): 1048. doi: 10.3390/s17051048
    [24] 盖绍彦, 达飞鹏. 一种新的相位法三维轮廓测量系统模型及其标定方法研究[J]. 自动化学报,2007,33(9):902-910.

    GAI S Y, DA F P. A new model of 3D shape measurement system based on phase measuring profilometry and its calibration[J]. Acta Automatica Sinica, 2007, 33(9): 902-910. (in Chinese)
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  1253
  • HTML全文浏览量:  669
  • PDF下载量:  249
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-01-10
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回