留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于定标的非均匀性校正改进算法

王成龙 王春阳 谷健 赵新宇

王成龙, 王春阳, 谷健, 赵新宇. 一种基于定标的非均匀性校正改进算法[J]. 中国光学(中英文), 2022, 15(3): 498-507. doi: 10.37188/CO.2021-0231
引用本文: 王成龙, 王春阳, 谷健, 赵新宇. 一种基于定标的非均匀性校正改进算法[J]. 中国光学(中英文), 2022, 15(3): 498-507. doi: 10.37188/CO.2021-0231
WANG Cheng-long, WANG Chun-yang, GU Jian, Zhao Xin-yu. An improved non-uniformity correction algorithm based on calibration[J]. Chinese Optics, 2022, 15(3): 498-507. doi: 10.37188/CO.2021-0231
Citation: WANG Cheng-long, WANG Chun-yang, GU Jian, Zhao Xin-yu. An improved non-uniformity correction algorithm based on calibration[J]. Chinese Optics, 2022, 15(3): 498-507. doi: 10.37188/CO.2021-0231

一种基于定标的非均匀性校正改进算法

doi: 10.37188/CO.2021-0231
基金项目: 国防基础科研计划资助项目(No. JCKY-2016411C006)
详细信息
    作者简介:

    王成龙(1981—),男,辽宁沈阳人,硕士,副研究员,2005年于中国科技大学获得学士学位,现为中国科学院长春光学精密机械与物理研究所副研究员,主要从事靶场光学测量方面的研究。E-mail:13944934139@139.com

    王春阳(1964—),女,吉林长春人,工学博士,教授,博士生导师,副院长。现任中国自动化学会高级会员,吉林省自动化学会理事,中国光学学会会员, 第三届中国机械工业教育协会自动化学科教学委员会委员,长春博士联合会第三届理事,教育部高等学校电子信息类专业教学指导委员会协作委员。主要研究方向为复杂运动系统高精稳定控制、光电精密检测与信息处理技术等。E-mail:chunyang.wang@136.com

    谷 健( 1989—),男, 山西朔州人, 2010年于哈尔滨工业大学获工学硕 士学位,工程师, 现就任中国人民解放军63768 部队,主要研究方向光学设计及激光制导技术 , 大型望远镜技术总体等。E-mail:gujianhgd@163.com

  • 中图分类号: TN215

An improved non-uniformity correction algorithm based on calibration

Funds: Supported by National Defense Basic Scientific Research program of China (No.JCKY-2016411C006)
More Information
  • 摘要: 红外辐射测量系统的成像性能以及测量精度受到焦平面阵列非均匀性的严重影响,原始红外图像的非均匀性需通过后期图像处理算法进行校正。为进一步提高制冷型红外探测器的非均匀性校正(NUC)效果,本文提出了一种基于定标的非均匀性改进算法。该算法以单点定标和两点定标非均匀性校正方法为基础,既保留两点定标非均匀性校正方法增益校正系数的一致性优势,又结合了单点定标偏置校正系数的稳定性,使得改进算法具有更好的校正效果。为了验证该改进算法的校正效果,本文以640 pixel×512 pixel大小的制冷型中波红外探测器为研究对象,采用入瞳直径为25 mm的红外成像系统对提出的算法进行实验验证。实验结果表明:在1 ms积分时间下,单点定标方法、两点定标方法及改进算法校正后的图像非均匀性分别为1.7833%、0.2190%和0.1481%;2 ms积分时间下的非均匀性分别为1.8257%、2.2474%和1.6546%。改进算法整体上进一步降低了图像的非均匀性,校正效果更好、精度更高。

     

  • 图 1  面源黑体近距离辐射定标的能量传输

    Figure 1.  Energy transfer of near-range radiometric calibration of the area source blackbody

    图 2  两点定标非均匀性校正原理

    Figure 2.  Principle of two-point calibration NUC

    图 3  探测器定标拟合曲线

    Figure 3.  The calibration fitting curve of the detector

    图 4  (a)均匀辐射输入时,探测器的原始输出信号;(b)存在条纹的未校正的场景成像图

    Figure 4.  (a) The raw output signal of the detector at uniform radiation input; (b) an uncorrected scene image with stripes

    图 5  (a)图像采集系统示意图;(b) 图像采集装置图

    Figure 5.  (a) Schematic diagram of image acquisition system; (b) image acquisition device

    图 6  积分时间为(a)1 ms和(b)2 ms的非均匀性校正结果

    Figure 6.  Results of NUC for different integral times. (a) 1ms; (b) 2 ms

    图 7  (a)未校正像元的非均匀性;(b)单点定标NUC像元的非均匀性;(c)两点定标NUC像元的非均匀性;(d)改进的 NUC像元的非均匀性

    Figure 7.  (a) NU of uncorrected pixels; (b) NU of pixels with single-point calibration NUC; (c) NU of pixels with two-point calibration NUC; (d) NU of pixels with improved NUC

    图 8  NUC改进算法校正前后的场景成像图

    Figure 8.  Scene images before and after being corrected by improved NUC algorithm

    图 9  (a)焦平面阵列的原始输出信号;(b)NUC改进算法校正后焦平面阵列的输出信号

    Figure 9.  (a) Raw output signal of FPA; (b) output signal of FPA after the correction by improved NUC algorithm

    表  1  制冷型红外相机参数

    Table  1.   Parameters of cooled infrared camera

    ParametersRequirement
    MaterialsHgCdTe
    Spectral range3.7 µm~4.8 µm
    Aperturef/2
    Pixel size15 µm×15 µm
    Pixel depth14
    Resolution640(H)×512(V)
    Operating temperature−40 °C~+60 °C
    下载: 导出CSV

    表  2  面源黑体参数

    Table  2.   Parameters of area source blackbody

    ParametersRequirement
    Blackbody emitter size100 mm×100 mm
    Temp. range0 °C ~125 °C
    Set point resolution0.001 °C
    Emissivity0.98±0.02
    Operating temp. head−20 °C~70 °C
    Operating temp. controller0 °C ~50 °C
    下载: 导出CSV

    表  3  NUC实验结果

    Table  3.   Results of NUC experiment

    Integral time/msBlackbody temperature/°CNon-uniformity/%
    UncorrectedSingle-point NUCTwo-point NUCImproved NUC
    1503.84531.04030.24370.1451
    603.92531.83940.24270.1695
    704.04172.47030.17040.1297
    Average3.93741.78330.21900.1481
    2503.82741.06971.71840.9707
    603.96421.89632.30161.7212
    704.07802.51122.72232.2718
    Average3.95651.82572.24741.6546
    下载: 导出CSV
  • [1] A. F. Milton, F. R. Barone, M. R. Kruer. Influence of nonuniformity on infrared focal plane array performance[J]. Optical Engineering, 1985, 24(5): 855-862.
    [2] M. Schulz, L. Caldwell. Nonuniformity correction and correctability of infrared focal plane arrays[J]. Infrared Physics &Technology, 1994, 36: 763-777.
    [3] CAO Y P, Christel-L T. Shutterless solution for simultaneous focal plane array temperature estimation and nonuniformity correction in uncooled long-wave infrared camera[J]. Applied Optics, 2013, 52(25): 6266-6271. doi: 10.1364/AO.52.006266
    [4] Clay S, Doug M, Ron D. Analysis and implications of resistive emitter array non-uniformity correction (NUC) between sensors with different spectral bands[C]. Technologies for Synthetic Environments: Hardware-in-the-Loop Testing III, SPIE (3368), 1998.138-156.
    [5] Joe LV, Greg F, Kevin S, et al. LWIR NUC Using an Uncooled Microbolometer Camera[C]. Technologies for Synthetic Environments: Hardware-in-the-Loop Testing XV SPIE(7663), 2010.766306.
    [6] CAO Y P, Christel-L T. Solid-state temperature-dependent NUC (Non-Uniformity Correction) in uncooled LWIR (Long-Wave Infra-Red) Imaging System[C]. Infrared Technology and Applications XXXIX, SPIE (8704), 2013.87042W.
    [7] SHENG Y C, DUN X, QIU S, et al. On-orbit non-uniformity correction method for infrared remote sensing systems using controllable internal calibration sources[J]. J. Infrared Millim. Waves, 2021, 40(5): 655-663.
    [8] 张明杰, 李岩, 马文坡, 等. 盛一成, 顿雄, 裘溯, 等. 基于可控内定标源的星上红外遥感相机非均匀性校正方法[J]. 红外技术,2021,43(4):324-333.

    ZHANG M J, LI Y, MA W P, LIU Z Y. Non-uniformity Correction for Large Format Array Infrared Detectors Based on Regional Correction[J]. Infrared Technology, 2021, 43(4): 324-333. (in Chinese)
    [9] 赵振男, 宋鸿飞, 任宏凯. 一种改进的基于场景的非均匀性校正方法[J]. 长春理工大学学报(自然科学版),2020,43(2):53-57.

    ZHAO ZH N, SONG H F, REN H K. An Improved Scene-based Non-uniformity Correction Method[J]. Journal of Changchun University of Science and Technology(Natural Science Edition), 2020, 43(2): 53-57. (in Chinese)
    [10] LIU CH W, SUI X B. Improved calibration-based non-uniformity correction method for uncooled infrared camera[C]. Infrared Sensors, Devices, and Applications VII, SPIE(10404), 2017.104040X.
    [11] 余毅, 常松涛, 王旻, 等. 宽动态范围红外测量系统的快速非均匀性校正[J]. 光学精密工程,2015,23(7):1932-1938.

    YU Y, CHANG S T, WANG M, et al. Fast non-uniformity correction for high dynamic infrared radiometric system[J]. Optics and Precision Engineering, 2015, 23(7): 1932-1938. (in Chinese)
    [12] 关同辉, 张同贺. 一种新型实时两点非均匀性校正方法[J]. 航空兵器,2021,28(4):112-117. doi: 10.12132/ISSN.1673-5048.2020.0003

    Gun T H, Zhang T H. A New Real-time two-Point Nonuniformity Correction method[J]. AERO WEAPONRY, 2021, 28(4): 112-117. (in Chinese) doi: 10.12132/ISSN.1673-5048.2020.0003
    [13] 王跃明, 陈建新, 刘银年, 等. 红外焦平面器件二点多段非均匀性校正算法研究[J]. 红外与毫米波学报,2003,22(6):415-418.

    WANG Y M CHEN J X, LIU Y N, et al. Study on two-point multi-section IRFPA non-uniformity correction algorithm[J]. Infrared Millim. Waves, 2003, 22(6): 415-418. (in Chinese)
    [14] 孙志远, 常松涛, 朱玮. 大口径、宽动态范围红外测量系统辐射定标方法[J]. 光学学报,2014,53(27):6274-6279.

    SUN Z Y, CHANG S T, ZHU W. Radiation calibration method for infrared system with large aperture and broad dynamic range[J]. Acta Optica Sinica, 2014, 53(27): 6274-6279. (in Chinese)
    [15] CHANG S T, ZHANG Y Y, SUN Z Y, et al. Method to remove the effect of ambient temperature on radiometric calibration[J]. Applied optics, 2014, 53(27): 6274-6279.
    [16] 黄宇, 张宝辉, 吴杰, 等. 自适应多点定标非均匀性校正算法[J]. 红外技术,2020,42(7):637-643.

    HUANG Y, ZHANG B H, WU J, et al. Adaptive Multipoint Calibration Non-uniformity Correction Algorithm[J]. Infrared Technology, 2020, 42(7): 637-643. (in Chinese)
    [17] 刘会通, 易新建. 红外焦平面阵列非均匀性的两点校正及依据[J]. 红外与激光工程,2004,33(1):76-78.

    LIU H T, YI X J. Two-point nonuniformity correction for IRFPA and its physical motivation[J]. Infrared and Laser Engineering, 2004, 33(1): 76-78. (in Chinese)
    [18] 中国科学院上海技术物理研究所, GB/T 17444-1998 红外焦平面阵列特性参数测试技术规范[S], 中国质检出版社, 北京, 1988.

    Shanghai Institute of Technical Physics of Chinese Academy of Sciences, GB/T 17444-1998 The technical norms of measurement and test of characteristic parameters of infrared focal plane arrays [S], China Zhijian Publishing House, Beijing, 1988. (in Chinese)
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  242
  • PDF下载量:  177
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-01-13
  • 网络出版日期:  2022-04-19
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!