留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宽波段光源拼接镜新型共相检测技术研究

李斌 杨阿坤 邹吉平

李斌, 杨阿坤, 邹吉平. 基于宽波段光源拼接镜新型共相检测技术研究[J]. 中国光学(中英文), 2022, 15(4): 797-805. doi: 10.37188/CO.2021-0234
引用本文: 李斌, 杨阿坤, 邹吉平. 基于宽波段光源拼接镜新型共相检测技术研究[J]. 中国光学(中英文), 2022, 15(4): 797-805. doi: 10.37188/CO.2021-0234
LI Bin, YANG A-kun, ZOU Ji-ping. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. doi: 10.37188/CO.2021-0234
Citation: LI Bin, YANG A-kun, ZOU Ji-ping. A new co-phasing detection technology of a segmented mirror based on broadband light[J]. Chinese Optics, 2022, 15(4): 797-805. doi: 10.37188/CO.2021-0234

基于宽波段光源拼接镜新型共相检测技术研究

doi: 10.37188/CO.2021-0234
基金项目: 国家自然科学基金资助项目(No. 12103019)
详细信息
    作者简介:

    李 斌(1989—),男,江西鹰潭人,博士,讲师,华东交通大学机电学院教师,2012年于武汉大学获得学士学位,2017年于中国科学院光电技术研究所获得博士学位,主要从事拼接镜共相检测和太赫兹光谱应用的研究。E-mail:libingioe@126.com

  • 中图分类号: O436

A new co-phasing detection technology of a segmented mirror based on broadband light

Funds: Supported by National Natural Science Foundation of China (No. 12103019)
More Information
  • 摘要:

    鉴于单块口径的光学望远镜不能无限增大,采用拼接镜技术才能造出10 m以上口径的光学望远镜,因此,拼接镜的共相检测技术成为了拼接过程和维持镜面质量的关键技术。针对目前最被接受的宽窄带夏克哈特曼法,本文提出使用宽波段(400~700 nm)光源的非相干性和相干性相结合方式实现250 nm粗共相,以及10 nm精共相,以此解决由于目标流量过低而引起测量时间过长的问题。即在粗共相时,以两个半圆孔的非相干衍射图样为模板,白光为光源,采用互相关算法计算互相关系数的值,通过设置合理的互相关系数阈值,以实现无限制的检测范围和0.25 μm 的检测精度;精共相时,以白光为光源、采用以一幅相干衍射图案(理想白光艾里斑)为模板的方式替代多幅不同平移误差下的相干衍射图案为模板方式,实现0.27 μm量程、0.01 μm以上精度的共相检测。对该共相方法进行了理论和仿真分析,结果表明:该新型共相检测方法的检测量程为无限量程,检测精度能达到 10 nm以上,该方法适用于拼接镜粗精共相的检测。

     

  • 图 1  放置在子镜间的圆孔示意图

    Figure 1.  Schematic diagram of circular hole placed between sub-mirrors

    图 2  在400~700 nm带宽下,平移误差从1 μm到−1 μm变化时的理论圆孔衍射图

    Figure 2.  Theoretical circular diffraction patterns when piston error is varying from 1 μm to −1 μm at 400−700 nm bandwidth

    图 3  在400~700 nm带宽下,平移误差从250 nm到−250 nm变化时的理论圆孔衍射图

    Figure 3.  Theoretical circular diffraction patterns when piston error is varying from 250 nm to −250 nm at 400−700 nm bandwidth

    图 4  平移误差大于可见光相干长度时的(a)模板图案和(b)互相关系数Corr2随拼接镜平移误差变化关系图

    Figure 4.  (a) Template pattern and (b) Corr2 as a function of piston errors when piston error is greater than visible coherence length

    图 5  平移误差在可见光相干长度以内时的(a)模板图案和(b)互相关系数Corr2随拼接镜平移误差变化关系图

    Figure 5.  (a) Template pattern and (b) Corr2 as a function of piston errors when piston error is within the coherence length of visible light

    图 6  R1分别为0.2、0.3、0.4时,互相关系数Corr2值与平移误差关系图

    Figure 6.  Corr2 as a function of piston errors when R1 is 0.2, 0.3 and 0.4

    图 7  R2分别为0.3、0.4、0.5时,互相关系数Corr2值与平移误差关系图

    Figure 7.  Corr2 as a function of piston errors when R2 is 0.3, 0.4 and 0.5

    图 8  SNR分别为45、60、90时,互相关系数Corr2值与平移误差关系图

    Figure 8.  Corr2 as a function of piston errors when SNR is 45, 60 and 90

    图 9  R1=0.2,R2=0.3,SNR=90和R1=0.3,R2=0.3,SNR=90时,互相关系数Corr2值与平移误差关系图

    Figure 9.  Corr2 as a function of piston errors when R1=0.2, R2=0.3, SNR=90 and R1=0.3, R2=0.3, SNR=90

  • [1] CHANAN G, TROY M. Strehl ratio and modulation transfer function for segmented mirror telescopes as functions of segment phase error[J]. Applied Optics, 1999, 38(31): 6642-6647. doi: 10.1364/AO.38.006642
    [2] 徐抒岩, 张旭升, 范阔, 等. 大型光学系统波前检测中气流扰动的抑制[J]. 光学 精密工程,2020,28(1):80-89. doi: 10.3788/OPE.20202801.0080

    XU SH Y, ZHANG X SH, FAN K, et al. Suppression of airflow turbulence in wavefront measurement for large-aperture optical systems[J]. Optics and Precision Engineering, 2020, 28(1): 80-89. (in Chinese) doi: 10.3788/OPE.20202801.0080
    [3] 范文强, 王志臣, 陈宝刚, 等. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学,2020,13(6):1194-1208. doi: 10.37188/CO.2020-0032

    FAN W Q, WANG ZH C, CHEN B G, et al. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. (in Chinese) doi: 10.37188/CO.2020-0032
    [4] 周程灏, 王治乐, 朱峰. 大口径光学合成孔径成像技术发展现状[J]. 中国光学,2017,10(1):25-38. doi: 10.3788/co.20171001.0025

    ZHOU CH H, WANG ZH L, ZHU F. Review on optical synthetic aperture imaging technique[J]. Chinese Optics, 2017, 10(1): 25-38. (in Chinese) doi: 10.3788/co.20171001.0025
    [5] 王丰璞, 李新南, 徐晨, 等. 大型光学红外望远镜拼接非球面子镜反衍补偿检测光路设计[J]. 中国光学,2021,14(5):1184-1193. doi: 10.37188/CO.2020-0218

    WANG F P, LI X N, XU CH, et al. Optical testing path design for LOT aspheric segmented mirrors with reflective-diffractive compensation[J]. Chinese Optics, 2021, 14(5): 1184-1193. (in Chinese) doi: 10.37188/CO.2020-0218
    [6] 管雯璐, 谭逢富, 靖旭, 等. 基于环境温度反馈的卡塞格林望远镜自动调焦[J]. 光学 精密工程,2021,29(8):1832-1838. doi: 10.37188/OPE.20212908.1832

    GUAN W L, TAN F F, JING X, et al. Automatic focusing of Cassegrain telescope based on environmental temperature feedback[J]. Optics and Precision Engineering, 2021, 29(8): 1832-1838. (in Chinese) doi: 10.37188/OPE.20212908.1832
    [7] 顾伯忠, 陈萌, 乐中宇. 大型望远镜主镜室碳纤维桁架单元的优化[J]. 光学 精密工程,2021,29(9):2116-2125. doi: 10.37188/OPE.20212909.2116

    GU B ZH, CHEN M, YUE ZH Y. Optimization of carbon fiber truss element for primary mirror chamber of large telescope[J]. Optics and Precision Engineering, 2021, 29(9): 2116-2125. (in Chinese) doi: 10.37188/OPE.20212909.2116
    [8] ZHANG D, ZHANG X B, XU SH Y, et al. Simplified phase diversity algorithm based on a first-order Taylor expansion[J]. Applied Optics, 2016, 55(28): 7872-7877. doi: 10.1364/AO.55.007872
    [9] ORLOV V G, CUEVAS S, GARFIAS F, et al. Co-phasing of segmented mirror telescopes with curvature sensing[J]. Proceedings of SPIE, 2000, 4004: 540-551. doi: 10.1117/12.393930
    [10] CAO H F, ZHANG J X, YANG F, et al. Extending capture range for piston error in segmented primary mirror telescopes based on wavelet support vector machine with improved particle swarm optimization[J]. IEEE Access, 2020, 8: 111585-111597. doi: 10.1109/ACCESS.2020.3002901
    [11] CHANAN G, TROY M, DEKENS F, et al. Phasing the mirror segments of the Keck telescopes: the broadband phasing algorithm[J]. Applied Optics, 1998, 37(1): 140-155. doi: 10.1364/AO.37.000140
    [12] CHANAN G, OHARA C, TROY M. Phasing the mirror segments of the Keck telescopes II: the narrow-band phasing algorithm[J]. Applied Optics, 2000, 39(25): 4706-4714. doi: 10.1364/AO.39.004706
    [13] LI X Y, YANG X, WANG SH Q, et al. The piston error recognition technique used in the modified Shack–Hartmann sensor[J]. Optics Communications, 2021, 501: 127388. doi: 10.1016/j.optcom.2021.127388
    [14] 林旭东, 王建立, 刘欣悦, 等. 拼接镜主动光学共相实验[J]. 光学 精密工程,2010,18(7):1520-1528.

    LIN X D, WANG J L, LIU X Y, et al. Co-phase experiment of active optics for segmented-mirrors[J]. Optics and Precision Engineering, 2010, 18(7): 1520-1528. (in Chinese)
    [15] ESPOSITO S, PINNA E, TOZZI A, et al. Cophasing of segmented mirrors using the pyramid sensor[J]. Proceedings of SPIE, 2003, 5169: 72-78. doi: 10.1117/12.511507
    [16] ZHANG Y F, XIAN H. Coarse co-phasing method based on slope of visibility-enhanced dispersed fringe pattern for segmented telescope[J]. Optics Communications, 2020, 459: 124998. doi: 10.1016/j.optcom.2019.124998
    [17] ZHANG Y F, XIAN H. Piston sensing for a segmented mirror system via a digital dispersed fringe generated by wavelength tuning[J]. Optics Letters, 2020, 45(5): 1051-1054. doi: 10.1364/OL.385262
    [18] LI B, YU W H, TANG J L, et al. Theory and experiment of phasing detection by use of two wavelengths[J]. Applied Optics, 2017, 56(1): 1-7. doi: 10.1364/AO.56.000001
    [19] LI B, YU W H, CHEN M, et al. Co-phasing experiment of a segmented mirror using a combined broadband and two-wavelength algorithm[J]. Applied Optics, 2017, 56(32): 8871-8879. doi: 10.1364/AO.56.008871
    [20] LI B, YU W H, CHEN M, et al. Co-focus experiment of segmented mirror[J]. Chinese Physics B, 2017, 26(6): 060706. doi: 10.1088/1674-1056/26/6/060706
    [21] WANG Y R, JIANG F Y, JU G H, et al. Deep learning wavefront sensing for fine phasing of segmented mirrors[J]. Optics Express, 2021, 29(16): 25960-25978. doi: 10.1364/OE.434024
    [22] MA X F, XIE Z L, MA H T, et al. Piston sensing for sparse aperture systems with broadband extended objects via a single convolutional neural network[J]. Optics and Lasers in Engineering, 2020, 128: 106005. doi: 10.1016/j.optlaseng.2020.106005
    [23] 李斌, 吴建, 刘燕德, 等. 拼接镜主动共相实验研究[J]. 光子学报,2018,47(2):0212003.

    LI B, WU J, LIU Y D, et al. Co-phasing experiment of active optics for segmented mirror[J]. Acta Photonica Sinica, 2018, 47(2): 0212003. (in Chinese)
    [24] 李斌, 刘燕德, 谢锋云. 拼接镜新型粗共相检测方法[J]. 光学 精密工程,2018,26(11):2647-2653. doi: 10.3788/OPE.20182611.2647

    LI B, LIU Y D, XIE F Y. Coarse co-phasing detection of segmented mirrors[J]. Optics and Precision Engineering, 2018, 26(11): 2647-2653. (in Chinese) doi: 10.3788/OPE.20182611.2647
  • 加载中
图(9)
计量
  • 文章访问数:  498
  • HTML全文浏览量:  301
  • PDF下载量:  105
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-31
  • 修回日期:  2022-01-24
  • 录用日期:  2022-02-13
  • 网络出版日期:  2022-04-27

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!