留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于机器学习的过焦扫描显微测量方法研究

李冠楠 石俊凯 陈晓梅 高超 姜行健 崔成君 朱强 霍树春 周维虎

李冠楠, 石俊凯, 陈晓梅, 高超, 姜行健, 崔成君, 朱强, 霍树春, 周维虎. 基于机器学习的过焦扫描显微测量方法研究[J]. 中国光学(中英文), 2022, 15(4): 703-711. doi: 10.37188/CO.2022-0009
引用本文: 李冠楠, 石俊凯, 陈晓梅, 高超, 姜行健, 崔成君, 朱强, 霍树春, 周维虎. 基于机器学习的过焦扫描显微测量方法研究[J]. 中国光学(中英文), 2022, 15(4): 703-711. doi: 10.37188/CO.2022-0009
LI Guan-nan, SHI Jun-kai, CHEN Xiao-mei, GAO Chao, JIANG Xing-jian, CUI Cheng-jun, ZHU Qiang, HUO Shu-chun, ZHOU Wei-hu. Through-focus scanning optical microscopy measurement based on machine learning[J]. Chinese Optics, 2022, 15(4): 703-711. doi: 10.37188/CO.2022-0009
Citation: LI Guan-nan, SHI Jun-kai, CHEN Xiao-mei, GAO Chao, JIANG Xing-jian, CUI Cheng-jun, ZHU Qiang, HUO Shu-chun, ZHOU Wei-hu. Through-focus scanning optical microscopy measurement based on machine learning[J]. Chinese Optics, 2022, 15(4): 703-711. doi: 10.37188/CO.2022-0009

基于机器学习的过焦扫描显微测量方法研究

基金项目: 国家重点研发计划(No. 2019YFB2005603);清华大学精密测试技术及仪器国家重点实验室开放基金(No. TH20-01);国家自然科学基金(No. 51905528);精密测试及仪器国家重点实验室开放基金(No. pilab2102)
详细信息
    作者简介:

    李冠楠(1994—),女,内蒙古赤峰人,硕士,助理工程师,2017年于哈尔滨工业大学获得光电信息科学与工程专业学士学位,2020年于中国科学院大学获得光学工程硕士学位,主要从事微纳测量和光学检测方面的研究。E-mail:liguannan@ime.ac.cn

    石俊凯(1986—),男,天津宁河人,博士,副研究员,2015年于天津大学精仪学院获得博士学位,主要从事光学精密测量、微纳检测及飞秒激光方面的研究。E-mail:shijunkai@ime.ac.cn

  • 中图分类号: TP181;P207+.1;TH744

Through-focus scanning optical microscopy measurement based on machine learning

Funds: Supported by the National Key R&D Program of China (No. 2019YFB2005603); the National Key Laboratory of Precision Testing Techniques and Instrument (Tsinghua University) (No. TH20-01); the National Natural Science Foundation of China (No. 51905528); State Key Laboratory of Precision Measuring Technology and Instruments (Tianjin University) (No. pilab2102)
More Information
  • 摘要:

    微电子机械系统(Micro-Electro-Mechanical System,MEMS)具有小型化、高集成度的特点,随着MEMS结构深宽比的不断增大,对MEMS结构尺寸的测量提出更高的要求。过焦扫描光学显微技术(Through-focus Scanning Optical Microscopy,TSOM)是一种高精度无损的光学测量方法,通过采集一组离焦图并沿扫描方向截取TSOM图像,利用库匹配的方法从中提取待测结构的尺寸信息。该方法对于纳米级结构测量有着极高的灵敏度,然而对于微米级特征尺寸存在建库困难且易受环境干扰的问题。本文针对微米级MEMS沟槽结构,在传统的光学显微镜基础上进行改造,建立了TSOM光学系统采集离焦图像,利用图像特征提取方法生成TSOM特征向量集,结合机器学习的方法建立不同槽宽尺寸的回归预测模型,对微米级MEMS槽宽尺寸实现纳米级测量精度,单点重复性测量2 μm槽宽的相对标准差(Relative Standard Deviation,RSD)在1%左右,10 μm和30 μm槽宽RSD分别低于0.2%和0.35%,结果表明该方法对于微米级MEMS沟槽测量具有极高的应用前景。

     

  • 图 1  TSOM流程示意图

    Figure 1.  Schematic diagram of the TSOM process

    图 2  (a)TSOM实验装置;(b)、(c)、(d)槽宽2 μm、10 μm、30 μm的TSOM伪彩图,其中横向对应像素点,纵向对应离焦扫描位置

    Figure 2.  (a) TSOM experimental setup; TSOM pseudo color images with widths of (b) 2 μm, (c) 10 μm, and (d) 30 μm. The lateral axis represents pixels and the vertical axis represents through-focus positions

    图 3  基于HOG-SVR的MEMS槽宽预测流程图

    Figure 3.  MEMS widths prediction flowchart based on HOG-SVR

    图 4  HOG特征提取

    Figure 4.  HOG feature extraction

    图 5  SVR原理图

    Figure 5.  Schematic diagram of SVR

    图 6  数据集获取流程

    Figure 6.  Processes of dataset acquirement

    图 7  不同槽宽和槽深的MEMS沟槽基于SVR的预测结果

    Figure 7.  Prediction results of MEMS groove with different widths and depths based on SVR

    图 8  模型预测性能评价指标

    Figure 8.  Evaluation indicators of prediction performance of the model

    图 9  模型单点重复性预测结果

    Figure 9.  Prediction results of single point repeatability of the mode

    表  1  样品参数

    Table  1.   Sample parameters

    样品编号设计槽宽/μm槽深/μm深宽比电镜实测槽宽/μm
    122412∶12.21/2.52/2.61/2.86/3.06
    22200100∶11.79/1.98/2.19/2.58
    310343.4∶110.5/10.7/10.8/11.1/11.3
    41010610.6∶110.8/11/11.3/11.7
    530381.3∶130.6/30.9/31/31.2/31.5
    6302367.9∶131.4/31.8/32.1/33.1
    下载: 导出CSV
  • [1] 秦雷, 谢晓瑛, 李君龙. MEMS技术发展现状及未来发展趋势[J]. 现代防御技术,2017,45(4):1-5,23.

    QIN L, XIE X Y, LI J L. Development status and future development trend of MEMS technology[J]. Modern Defense Technology, 2017, 45(4): 1-5,23. (in Chinese)
    [2] 穆继亮, 郭茂香, 刘冰, 等. 高深宽比硅基微纳结构制造方法及其应用[J]. 半导体技术,2013,38(5):321-327.

    MU J L, GUO M X, LIU B, et al. Fabrication methods and applications of silicon micro/nanometer structures with high aspect ratio[J]. Semiconductor Technology, 2013, 38(5): 321-327. (in Chinese)
    [3] 吴俊杰, 李源. 基于纳米测量机的微结构三维坐标测量[J]. 光学 精密工程,2020,28(10):2252-2259. doi: 10.37188/OPE.20202810.2252

    WU J J, LI Y. Three-dimensional coordinate measurement of microstructures based on Nano measuring machine[J]. Optics and Precision Engineering, 2020, 28(10): 2252-2259. (in Chinese) doi: 10.37188/OPE.20202810.2252
    [4] 张冬至, 胡国清. 微机电系统关键技术及其研究进展[J]. 压电与声光,2010,32(3):513-520.

    ZHANG D ZH, HU G Q. Key technologies of micro-electromechanical system and its recent progress[J]. Piezoelectrics &Acoustooptics, 2010, 32(3): 513-520. (in Chinese)
    [5] OGURA T. A high contrast method of unstained biological samples under a thin carbon film by scanning electron microscopy[J]. Biochemical and Biophysical Research Communications, 2008, 377(1): 79-84. doi: 10.1016/j.bbrc.2008.09.097
    [6] 冯斌, 王建华. 表面形貌光学法测量技术[J]. 计量与测试技术,2005,32(6):4-6.

    FENG B, WANG J H. The optical means used in measuring surface microtopography[J]. Metrology &Measurement Technique, 2005, 32(6): 4-6. (in Chinese)
    [7] SCHAPER A, RÖßLE M, FORMANEK H, et al. Complementary visualization of mitotic barley chromatin by field-emission scanning electron microscopy and scanning force microscopy[J]. Journal of Structural Biology, 2000, 129(1): 17-29. doi: 10.1006/jsbi.1999.4203
    [8] ATTOTA R, SILVER R, BARNES B M. Optical through-focus technique that differentiates small changes in line width, line height, and sidewall angle for CD, overlay, and defect metrology applications[J]. Proceedings of SPIE, 2008, 6922: 69220E. doi: 10.1117/12.777205
    [9] ATTOTA R. TSOM method for nanoelectronics dimensional metrology[J]. AIP Conference Proceedings, 2011, 1395(1): 57-63.
    [10] ATTOTA R, DIXSON R G, VLADÁR A E. Through-focus scanning optical microscopy[J]. Proceedings of SPIE, 2011, 8036: 803610. doi: 10.1117/12.884706
    [11] VARTANIAN V, ATTOTA R, PARK H, et al. TSV reveal height and dimension metrology by the TSOM method[J]. Proceedings of SPIE, 2013, 8681: 86812F. doi: 10.1117/12.2012609
    [12] ATTOTA R. Noise analysis for through-focus scanning optical microscopy[J]. Optics Letters, 2016, 41(4): 745-748. doi: 10.1364/OL.41.000745
    [13] ATTOTA R K, KANG H, SCOTT K, et al. Nondestructive shape process monitoring of three-dimensional, high-aspect-ratio targets using through-focus scanning optical microscopy[J]. Measurement Science and Technology, 2018, 29(12): 125007. doi: 10.1088/1361-6501/aae4c2
    [14] ATTOTA R. Through-focus or volumetric type of optical imaging methods: a review[J]. Journal of Biomedical Optics, 2018, 23(7): 070901.
    [15] LEE J H, PARK J H, JEONG D, et al. Tip/tilt-compensated through-focus scanning optical microscopy[J]. Proceedings of SPIE, 2016, 10023: 100230P.
    [16] QU Y F, HAO J L, PENG R J. Machine-learning models for analyzing TSOM images of nanostructures[J]. Optics Express, 2019, 27(23): 33978-33998. doi: 10.1364/OE.27.033978
    [17] PENG R J, JIANG J, REN J J, et al. Statistical character analysis for through-focus scanning optical microscopy in double floating variables measurement applications[J]. Optics and Lasers in Engineering, 2021, 141: 106560. doi: 10.1016/j.optlaseng.2021.106560
    [18] 葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安: 西安电子科技大学出版社, 2002.

    GE D B, YAN Y B. Finite-Difference Time-Domain Method for Electromagnetic Waves[M]. Xi’an: Xidian University Press, 2002. (in Chinese)
    [19] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE, 2005: 886-893.
    [20] 张瑞琰, 姜秀杰, 安军社, 等. 面向光学遥感目标的全局上下文检测模型设计[J]. 中国光学,2020,13(6):1302-1313. doi: 10.37188/CO.2020-0057

    ZHANG R Y, JIANG X J, AN J SH, et al. Design of global-contextual detection model for optical remote sensing targets[J]. Chinese Optics, 2020, 13(6): 1302-1313. (in Chinese) doi: 10.37188/CO.2020-0057
    [21] 耿庆田, 赵浩宇, 于繁华, 等. 基于改进HOG特征提取的车型识别算法[J]. 中国光学,2018,11(2):174-181. doi: 10.3788/co.20181102.0174

    GENG Q T, ZHAO H Y, YU F H, et al. Vehicle type recognition algorithm based on improved HOG feature[J]. Chinese Optics, 2018, 11(2): 174-181. (in Chinese) doi: 10.3788/co.20181102.0174
    [22] CORTES C, VAPNIK V. Support-vector networks[J]. Machine Learning, 1995, 20(3): 273-297.
    [23] 闫国华, 朱永生. 支持向量机回归的参数选择方法[J]. 计算机工程,2009,35(14):218-220.

    YAN G H, ZHU Y SH. Parameters selection method for support vector machine regression[J]. Computer Engineering, 2009, 35(14): 218-220. (in Chinese)
    [24] 于连栋, 常雅琪, 赵会宁, 等. 基于支持向量回归机的机器人定位精度提高[J]. 光学 精密工程,2020,28(12):2646-2654. doi: 10.37188/OPE.20202812.2646

    YU L D, CHANG Y Q, ZHAO H N, et al. Method for improving positioning accuracy of robot based on support vector regression[J]. Optics and Precision Engineering, 2020, 28(12): 2646-2654. (in Chinese) doi: 10.37188/OPE.20202812.2646
    [25] 邹永宁, 张智斌, 李琦, 等. 基于Hessian矩阵和支持向量机的CT图像裂纹分割[J]. 光学 精密工程,2021,29(10):2517-2527. doi: 10.37188/OPE.2021.0349

    ZOU Y N, ZHANG ZH B, LI Q, et al. Crack detection and segmentation in CT images using Hessian matrix and support vector machine[J]. Optics and Precision Engineering, 2021, 29(10): 2517-2527. (in Chinese) doi: 10.37188/OPE.2021.0349
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  1716
  • HTML全文浏览量:  981
  • PDF下载量:  241
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-10
  • 修回日期:  2022-03-03
  • 网络出版日期:  2022-05-16

目录

    /

    返回文章
    返回