留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

单片集成式主振荡功率放大器研究进展

谭满清 游道明 郭文涛 刘维华

谭满清, 游道明, 郭文涛, 刘维华. 单片集成式主振荡功率放大器研究进展[J]. 中国光学(中英文), 2023, 16(1): 61-75. doi: 10.37188/CO.2022-0022
引用本文: 谭满清, 游道明, 郭文涛, 刘维华. 单片集成式主振荡功率放大器研究进展[J]. 中国光学(中英文), 2023, 16(1): 61-75. doi: 10.37188/CO.2022-0022
TAN Man-qing, YOU Dao-ming, GUO Wen-tao, LIU Wei-hua. Research progress of monolithic integration master-oscillation power-amplifiers[J]. Chinese Optics, 2023, 16(1): 61-75. doi: 10.37188/CO.2022-0022
Citation: TAN Man-qing, YOU Dao-ming, GUO Wen-tao, LIU Wei-hua. Research progress of monolithic integration master-oscillation power-amplifiers[J]. Chinese Optics, 2023, 16(1): 61-75. doi: 10.37188/CO.2022-0022

单片集成式主振荡功率放大器研究进展

基金项目: 国家自然科学基金资助项目(No. 61935018);国家电网公司科技项目(No. 5700-202058482A-0-0-00)
详细信息
    作者简介:

    谭满清(1967—),男,湖南衡阳人,博士,研究员,博士生导师,1996年于北京理工大学获得博士学位,主要从事半导体光电子器件和模块化方面的研究。E-mail:mqtan@semi.ac.cn

    游道明(1998—),男,江西上饶人,硕士研究生,2020 年于哈尔滨工业大学获得学士学位,主要从事半导体光电子器件及其集成技术方面的研究。E-mail:youdaoming20@semi.ac.cn

    郭文涛(1986—),男,山西运城人,博士,副研究员,2009 年于南昌大学应用物理学专业获得学士学位;2014 年于中国科学院半导体研究所微电子学与固体电子学专业获得博士学位,研究方向为用于光纤传感领域的半导体光电子器件。E-mail:wtguo@semi.ac.cn

  • 中图分类号: TN248.4

Research progress of monolithic integration master-oscillation power-amplifiers

Funds: Supported by National Natural Science Foundation of China (No. 61935018); Science and Technology Project of State Grid Corporation of China (No. 5700-202058482A-0-0-00)
More Information
  • 摘要:

    单片集成式主振荡功率放大器(MOPA)具有体积小、功率大、光束质量高等优势,通过集成布拉格光栅,还能够实现窄线宽和动态单模,在倍频、泵浦、光通信和传感等领域具有重要应用价值,是近年来半导体光电子器件的研究热点。本文梳理了单片集成式MOPA的主流结构,包括锥形、脊型、布拉格光栅型和三段式MOPA,以各自的工作原理和性能特征为出发点,介绍其主要的研究方向,并结合它们各自面临的问题介绍最新的发展趋势。针对单片集成式MOPA中普遍存在的高功率下光束质量退化的问题,梳理了近年在外延层结构、腔面光学薄膜和电极设置等方面的优化设计,重点总结了单片集成式MOPA在提高光束质量及高功率、容线宽及高亮度方面的重要进展。围绕不同领域的应用需求,整理了具备高功率、窄线宽、高光束质量和高亮度等性能特征的单片集成式MOPA的研究进展,最后展望了单片集成式MOPA的发展趋势。

     

  • 图 1  锥形MOPA结构示意图。(a)立体结构;(b)平面结构

    Figure 1.  (a) Three-dimensional structure and (b) planar structure of a tapered-MOPA

    图 2  双锥形激光器结构示意图。(a)平面示意图;(b)立体结构示意图;(c)表面光栅的SEM剖面图;(d)表面光栅的SEM顶视图;(e)周期电注入示意图[33]

    Figure 2.  Schematic diagram of double tapered laser. (a) Planar structure; (b) three-dimensional structure; (c) SEM profile of the surface grating; (d) top view of the SEM of surface grating; (e) periodic electric injection diagram[33]

    图 3  脊型MOPA的结构示意图

    Figure 3.  Structure diagram of a ridge-amplifier MOPA

    图 4  弯曲脊型MOPA结构示意图[35]

    Figure 4.  Structure diagram of a bent ridge-amplifier MOPA[35]

    图 5  布拉格光栅型MOPA结构示意图。(a)DBR型;(b)DFB型

    Figure 5.  Structure diagrams of grating-MOPA. (a) DBR; (b) DFB

    图 6  双光栅型MOPA的结构示意图[47]

    Figure 6.  Structure diagram of a double DBR grating MOPA[47]

    图 7  光栅型MOPA用于倍频的装置图[50]

    Figure 7.  Schematic diagram of the frequency doubling setup with a MOPA[50]

    图 8  锥形光栅型MOPA结构示意图[52]

    Figure 8.  Structure diagram of a MOPA with tapered grating[52]

    图 9  三段式MOPA结构示意图

    Figure 9.  Structure diagram of three section MOPA

    图 10  外腔锁相MOPA结构示意图[60]

    Figure 10.  MOPA-based external Cavity mode-locked laser[60]

    图 11  分离电极MOPA的结构示意图

    Figure 11.  Diagram of separating electrode

    表  1  MOPA的主流结构和其特征及其面临的问题

    Table  1.   Structures, characteristics and problems of main MOPAs

    MOPA类型结构特征性能特征存在的问题
    锥形MOPA锥形放大器输出功率高整形耦合难度大
    脊型MOPA脊型放大器光束质量高输出功率低
    DBR-MOPADBR光栅窄线宽、输出功率高光栅工艺复杂
    DFB-MOPADFB光栅窄线宽、光束质量高光栅工艺复杂
    三段式MOPA集成控制器可调谐、多用途电流控制难度大
    下载: 导出CSV

    表  2  大功率MOPA研究进展

    Table  2.   Progress of high-power MOPA

    Yearλ/nmP/WKey featureRefs.
    2010106412DFB ASLOC Embed[101]
    2011106012ASLOC6thDBR AR/AR[102]
    2016103012.7ASLOC3thDBR AR/AR[51]
    2017103015.5TQW ASLOC 7thDBR[94]
    2017103010.5ASLOC 7thDBR[93]
    20189807.3TPL PHC[84]
    201910609.5ASLOC 7thDBR[29]
    20219757TPL[97]
    20227857DBR TPL[103]
    下载: 导出CSV

    表  3  窄线宽MOPA的研究进展

    Table  3.   Progress of MOPAs with a narrow linewidth

    Yearλ/nmLength/pmGrating featureRefs.
    20111 060<10DBR 6th surface[102]
    2015117810DBR 3th surface[10]
    2017103017DBR 7th surface[105]
    20199962.4DBR 44th surface[43]
    20199802.7DBR 44th surface[33]
    20217851DBR 10th surface[53]
    202178319DBR 10th surface[52]
    202278519DBR TPL[103]
    下载: 导出CSV

    表  4  高光束质量MOPA研究进展

    Table  4.   Progress of MOPAs with high beam quality

    Yearλ/nmM 2/1/e2Key featureRefs.
    201010641.3DFB ASLOC Embed[101]
    20116601.5TPL DQW[108]
    201610301.2ASLOC 3thDBR AR/AR[51]
    201710301.1TQW ASLOC 7thDBR[105]
    201710301.2ASLOC 7thDBR AR/AR[93]
    2018980<2TPL PBC[84]
    20199801.5TPL PBC narrow angle[26]
    201910601.1ASLOC 7thDBR[109]
    20199961.6444thDFB ASLOC DQW[43]
    20199801.744thDFB ASLOC DQW[33]
    20219751.66TPL[97]
    202115501.26TPL noval package[110]
    下载: 导出CSV

    表  5  高亮度MOPA研究进展

    Table  5.   Progress of MOPAs with high-brightness

    Yearλ/nmBrightness/MWcm−2sr−1Key featureRefs.
    2010980155(matrix)ASLOC TPL[91]
    20111 060860(1/e2)TPL HR/AR[102]
    20161030770(1/e2)TQW ASLOC[51]
    20171030700(1/e2)TQW ASLOC[93]
    20171030170(matrix)DFB special structure[94]
    201898085.3(matrix)PHC TPL[84]
    2019980126.8(matrix)PHC narrow angle[85]
    2021975369(1/e2)TPL[97]
    下载: 导出CSV
  • [1] 王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报,2015,36(1):1-19.

    WANG L J, NING Y Q, QIN L, et al. Development of High Power Diode Laser[J]. Chinese Journal of Luminescence, 2015, 36(1): 1-19. (in Chinese)
    [2] LEIDNER J P, MARCIANTE J R. Beam quality improvement in broad-area semiconductor lasers via evanescent spatial filtering[J]. IEEE Journal of Quantum Electronics, 2012, 48(10): 1269-1274. doi: 10.1109/JQE.2012.2207881
    [3] GORDEEV N Y, PAYUSOV A, MAXIMOV M. Semiconductor Laser Quasi-Array with Phase-Locked Single-Mode Emitting Channels[J]. Semiconductors, 2019, 53(10): 1405-1408. doi: 10.1134/S1063782619100087
    [4] YUAN M Y, WANG W Q, WANG X Y, et al. Demonstration of an external cavity semiconductor mode-locked laser[J]. Optics Letters, 2021, 46(19): 4855-4858. doi: 10.1364/OL.428794
    [5] KHARAS D, PLANT J J, LOH W, et al. High-power (> 300 mW) on-chip laser with passively aligned silicon-nitride waveguide DBR cavity[J]. IEEE Photonics Journal, 2020, 12(6): 1-12.
    [6] LIU G Y, MI SH Y, YANG K, et al. 161 W middle infrared ZnGeP 2 MOPA system pumped by 300 W-class Ho: YAG MOPA system[J]. Optics Letters, 2021, 46(1): 82-85. doi: 10.1364/OL.413755
    [7] XU Y, SHENG Q, WANG P, et al. 1.5-kW all-fiberized Yb-doped MOPA laser at 1105 nm with near-diffraction-limited beam quality and narrow spectral width[J]. Optics Communications, 2022: 127893.
    [8] OGRODOWSKI L, FRIEDMANN P, GILLY J, et al. Tapered amplifiers for high-power MOPA setups between 750 nm and 2000 nm[J]. Proceedings of SPIE, 2020, 11301: 113011E.
    [9] FIEBIG C, BLUME G, KASPARI C, et al. 12 W high-brightness single-frequency DBR tapered diode laser[J]. Electronics letters, 2008, 44(21): 1253-1255. doi: 10.1049/el:20081371
    [10] PASCHKE K, BUGGE F, BLUME G, et al. High-power diode lasers at 1178 nm with high beam quality and narrow spectra[J]. Optics letters, 2015, 40(1): 100-102. doi: 10.1364/OL.40.000100
    [11] ANDREWS J R. Traveling‐wave amplifier made from a laser diode array[J]. Applied physics letters, 1986, 48(20): 1331-1333. doi: 10.1063/1.96951
    [12] CARLSON N W, ABELES J H, BOUR D P, et al. Demonstration of monolithic, grating-surface-emitting laser master oscillator-cascaded power amplifier array[J]. IEEE Photonics technology letters, 1990, 2(10): 708-710. doi: 10.1109/68.60767
    [13] SAHM A, BAUMGäRTNER S, HOFMANN J, et al. Miniaturized semiconductor MOPA laser source at 772 nm for the generation of UV laser light[J]. Proceedings of SPIE, 2018, 10535: 1053521.
    [14] PASCHKE K, BLUME G, POHL J, et al. Reliable high-spectral-radiance 635 nm tapered diode lasers with monolithically integrated distributed Bragg reflector[J]. Proceedings of SPIE, 2020, 11262: 112620L.
    [15] BEYATLI E, SUMPF B, ERBERT G, et al. Efficient Tm: YAG and Tm: LuAG lasers pumped by 681 nm tapered diodes[J]. Applied Optics, 2019, 58(11): 2973-2980. doi: 10.1364/AO.58.002973
    [16] HANSEN A K, CHRISTENSEN M, NOORDEGRAAF D, et al. 1.9 W yellow, CW, high-brightness light from a high efficiency semiconductor laser-based system[J]. Proceedings of SPIE, 2017, 10088: 1008802.
    [17] LIANG M, LIU Q X, HU W T. 1550nm monolithic MOPA diode laser for Lidar applications[J]. Proceedings of SPIE, 2019, 11182: 1118207.
    [18] BLUME G, JEDRZEJCZYK D, POHL J, et al. 633-nm single-mode master-oscillator power-amplifier module[J]. Proceedings of SPIE, 2018, 10528: 105280D.
    [19] HOLLY C, HENGESBACH S, TRAUB M, et al. Simulation of spectral stabilization of high-power broad-area edge emitting semiconductor lasers[J]. Optics express, 2013, 21(13): 15553-15567. doi: 10.1364/OE.21.015553
    [20] KAUNGA-NYIRENDA S N, BULL S, LIM J J, et al. Factors influencing brightness and beam quality of conventional and distributed Bragg reflector tapered laser diodes in absence of self-heating[J]. IET Optoelectronics, 2014, 8(2): 99-107. doi: 10.1049/iet-opt.2013.0082
    [21] WALPOLE J, KINTZER E, CHINN S, et al. High‐power strained‐layer InGaAs/AlGaAs tapered traveling wave amplifier[J]. Applied physics letters, 1992, 61(7): 740-742. doi: 10.1063/1.107783
    [22] BEIL J A, SHIMOMOTO L, SWERTFEGER R B, et al. Improvements to tapered semiconductor MOPA laser design and testing[J]. Proceedings of SPIE, 2020, 10514: 105140U.
    [23] TIJERO J, BORRUEL L, VILERA M, et al. Simulation and geometrical design of multi-section tapered semiconductor optical amplifiers at 1.57 µm[J]. Proceedings of SPIE, 2020, 10514: 105140U.
    [24] TIJERO J M G, BORRUEL L, VILERA M, et al. Analysis of the performance of tapered semiconductor optical amplifiers: role of the taper angle[J]. Optical and Quantum Electronics, 2015, 47(6): 1437-1442. doi: 10.1007/s11082-014-0108-8
    [25] HUANG SH SH, ZHANG Y, LIAO Y P, et al. High-power single-spatial-mode gasb tapered laser around 2.0 μm with very small lateral beam divergence[J]. Chinese Physics Letters, 2017, 34(8): 084202. doi: 10.1088/0256-307X/34/8/084202
    [26] CHEN ZH H, QU H W, MA X L, et al. High-brightness low-divergence tapered lasers with a narrow taper angle[J]. Chinese Physics Letters, 2019, 36(8): 084201. doi: 10.1088/0256-307X/36/8/084201
    [27] LI J, QIU Y T, CAO Y H, et al. Numerical simulation and experiment of high brightness tapered lasers[J]. Optik, 2018, 158: 502-507. doi: 10.1016/j.ijleo.2017.12.158
    [28] 袁庆贺, 井红旗, 刘素平, 等. 导波模式对锥形半导体激光器输出特性的影响[J]. 中国激光,2021,48(9):0901001. doi: 10.3788/CJL202148.0901001

    YUAN Q H, JING H Q, LIU S P, et al. Influence of guided wave mode on output characteristics of tapered diode laser[J]. Chinese Journal of Lasers, 2021, 48(9): 0901001. (in Chinese) doi: 10.3788/CJL202148.0901001
    [29] ZINK C, MAAßDORF A, FRICKE J, et al. Monolithic master oscillator tilted tapered power amplifier emitting 9.5 W at 1060 nm[J]. IEEE Photonics Technology Letters, 2019, 32(1): 59-62.
    [30] 曾德圣, 仲莉, 刘素平, 等. 具有线性张角结构和非线性张角结构的锥形激光放大器的分析[J]. 光学学报,2020,40(3):0314002. doi: 10.3788/AOS202040.0314002

    ZENG D SH, ZHONG L, LIU S P, et al. Analysis of Tapered Laser Amplifiers with Linear and Nonlinear Angle-Opening Strucutres[J]. Acta Optica Sinica, 2020, 40(3): 0314002. (in Chinese) doi: 10.3788/AOS202040.0314002
    [31] YEO C I, JANG S J, YU J S, et al. 1.3um Laterally Tapered Ridge Waveguide DFB Lasers With Second-Order Cr Surface Gratings[J]. IEEE Photonics Technology Letters, 2010, 22(22): 1668-1670.
    [32] LIU L, QU H W, WANG Y F, et al. High-brightness single-mode double-tapered laser diodes with laterally coupled high-order surface grating[J]. Optics Letters, 2014, 39(11): 3231-3234. doi: 10.1364/OL.39.003231
    [33] LEI Y X, CHEN Y Y, GAO F, et al. High-power single-longitudinal-mode double-tapered gain-coupled distributed feedback semiconductor lasers based on periodic anodes defined by i-line lithography[J]. Optics Communications, 2019, 443: 150-155. doi: 10.1016/j.optcom.2019.02.073
    [34] Li X, Zhou Y, Xu H, et al. High-stability, high-pulse-energy MOPA laser system based on composite Nd: YAG crystal with multiple doping concentrations[J]. Optics &Laser Technology, 2022, 152: 108080.
    [35] BROX O, WIEDMANN J, SCHOLZ F, et al. Integrated 1060nm MOPA pump source for high-power green light emitters in display technology[J]. Proceedings of SPIE, 2008, 6909: 69091G. doi: 10.1117/12.761210
    [36] GORDEEV N Y, PAYUSOV A S, MUKHIN I S, et al. Lateral Mode Discrimination in Edge-Emitting Lasers with Spatially Modulated Facet Reflectance[J]. Semiconductors, 2019, 53(2): 200-204. doi: 10.1134/S1063782619020106
    [37] KAUL T, ERBERT G, MAAßDORF A, et al. Suppressed power saturation due to optimized optical confinement in 9xx nm high-power diode lasers that use extreme double asymmetric vertical designs[J]. Semiconductor Science and technology, 2018, 33(3): 035005. doi: 10.1088/1361-6641/aaa221
    [38] AHO A T, VIHERIäLä J, KOSKINEN M, et al. High-Power 1.5 μm Tapered Distributed Bragg Reflector Laser Diodes for Eye-Safe LIDAR[J]. IEEE Photonics Technology Letters, 2020, 32(19): 1249-1252. doi: 10.1109/LPT.2020.3019845
    [39] BROX O, BUGGE F, GINOLAS A, et al. High-power ridge waveguide DFB and DFB-MOPA lasers at 1064 nm with a vertical farfield angle of 15°[J]. Proceedings of SPIE, 2010, 7616: 761610. doi: 10.1117/12.840491
    [40] 刘野, 刘宇, 肖辉东, 等. 638nm光栅外腔窄线宽半导体激光器[J]. 中国光学,2020,13(6):1249-1256. doi: 10.37188/CO.2020-0249

    LIU Y, LIU Y, XIAO H D, et al. 638 nm narrow linewidth diode laser with a grating external cavity[J]. Chinese Optics, 2020, 13(6): 1249-1256. (in Chinese) doi: 10.37188/CO.2020-0249
    [41] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学,2019,12(1):48-58. doi: 10.3788/co.20191201.0048

    SUN S M FAN J, XU L, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi: 10.3788/co.20191201.0048
    [42] FRICKE J, WENZEL H, BROX O, et al. Surface Bragg gratings for high brightness lasers[J]. Proceedings of SPIE, 2020, 11301: 113011H.
    [43] LEI Y, CHEN Y, GAO F, et al. 996 nm high-power single-longitudinal-mode tapered gain-coupled distributed feedback laser diodes[J]. Applied Optics, 2019, 58(23): 6426-6432. doi: 10.1364/AO.58.006426
    [44] SPREEMANN M, LICHTNER M, RADZIUNAS M, et al. Measurement and simulation of distributed-feedback tapered master-oscillator power amplifiers[J]. IEEE Journal of Quantum Electronics, 2009, 45(6): 609-616. doi: 10.1109/JQE.2009.2013115
    [45] HELAL M, NYIRENDA-KAUNGA S, BULL S, et al. .Beam quality degradation processes in tapered lasers and DBR tapered lasers[C]. Proceedings of 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), IEEE, 2017: 25-26.
    [46] CHRISTENSEN M, ZINK C, JAMAL M T, et al. Measuring the sensitivity to optical feedback of single-frequency high-power laser diodes[J]. Journal of the Optical Society of America B, 2021, 38(3): 885-892. doi: 10.1364/JOSAB.417258
    [47] ZENG D SH, ZHONG L, LIU S P, et al. Analysis of the time domain characteristics of tapered semiconductor lasers[J]. Journal of Semiconductors, 2020, 41(3): 032305. doi: 10.1088/1674-4926/41/3/032305
    [48] RADZIUNAS M. Modeling and Simulations of Edge-emitting Broad-area Semiconductor Lasers and Amplifiers[M]//WYRZYKOWSKI R, DEELMAN E, DONGARRA J, et al. Parallel Processing and Applied Mathematics. Cham: Springer, 2016: 269-276.
    [49] MOURIKIS C, BLUME G, MAAßDORF A, et al. Coherent beam combining progress on diode lasers and tapered amplifiers at 808 nm[J]. Proceedings of SPIE, 2022, 11983: 119830D.
    [50] JEDRZEJCZYK D, GüTHER R, PASCHKE K, et al. Efficient high-power frequency doubling of distributed Bragg reflector tapered laser radiation in a periodically poled MgO-doped lithium niobate planar waveguide[J]. Optics Letters, 2011, 36(3): 367-369. doi: 10.1364/OL.36.000367
    [51] MÜLLER A, FRICKE J, BUGGE F, et al. DBR tapered diode laser with 12.7 W output power and nearly diffraction-limited, narrowband emission at 1030 nm[J]. Applied Physics B, 2016, 122(4): 87. doi: 10.1007/s00340-016-6360-9
    [52] SUMPF B, THEURER L S, MAIWALD M, et al. 783 nm wavelength stabilized DBR tapered diode lasers with a 7 W output power[J]. Appl. Opt., 2021, 60(18): 5418-5423. doi: 10.1364/AO.422688
    [53] SUMPF B, THEURER L S, MAIWALD M, et al. Narrow spectral line-width 785 nm DBR tapered lasers with 7 W output power[J]. Proceedings of SPIE, 2021, 11705: 117050O.
    [54] PABOEUF D, LUCAS-LECLIN G, GEORGES P, et al. Narrow-line coherently combined tapered laser diodes in a Talbot external cavity with a volume Bragg grating[J]. Applied Physics Letters, 2008, 93(21): 211102. doi: 10.1063/1.3036896
    [55] MÜLLER A, MAIWALD M, SUMPF B. Compact diode laser-based dual-wavelength master oscillator power amplifier at 785 nm[J]. IEEE Photonics Technology Letters, 2019, 31(13): 1120-1123. doi: 10.1109/LPT.2019.2920300
    [56] MÜLLER A, MAIWALD M, SUMPF B. Micro-integrated dual-wavelength ridge-waveguide master oscillator power amplifier with an optical output power of 0.5 W at 785 nm[J]. Proceedings of SPIE, 2020, 11301: 113011F.
    [57] DUPORT F, GOMEZ C, FORTIN C, et al. .Directly modulated high power semiconductor optical amplifier[C]. Proceedings of 2018 International Topical Meeting on Microwave Photonics (MWP), IEEE, 2018: 1-4.
    [58] PÉREZ-SERRANO A, VILERA M, TIJERO J M G, et al. A voltage driven traveling-wave model for the simulation of an integrated three-section MOPA under static and modulated operation[J]. IEEE Journal of Quantum Electronics, 2018, 54(2): 1-10.
    [59] PÉREZ-SERRANO A, TIJERO J M G, BALLE S, et al. Numerical analysis of the modulation dynamics in an integrated three-section MOPA using a voltage driven traveling-wave model[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1-10.
    [60] WANG Y, ZHANG X, TONG C, et al. High power femtosecond semiconductor lasers based on saw-toothed master-oscillator power-amplifier system with compressed ASE[J]. Optics Express, 2020, 28(5): 7108-7115. doi: 10.1364/OE.385576
    [61] LI J, KUKSENKOV D V, LIU W, et al. Wavelength tunable high-power single-mode 1060-nm DBR lasers[J]. Proceedings of SPIE, 2012, 8277: 82771L.
    [62] JENSEN O B, SUMPF B, ERBERT G, et al. Widely tunable high-power tapered diode laser at 1060 nm[J]. IEEE Photonics Technology Letters, 2011, 23(21): 1624-1626. doi: 10.1109/LPT.2011.2165702
    [63] TAWFIEQ M, FRICKE J, STöLMACKER C, et al. Spatial filtering of a six-wavelength DBR-RW laser in a MOPA system[J]. Applied Optics, 2021, 60(7): 1864-1870. doi: 10.1364/AO.414883
    [64] VU T N, TIEN T Q, SUMPF B, et al. 16.3 W Peak-Power Pulsed All-Diode Laser Based Multi-Wavelength Master-Oscillator Power-Amplifier System at 964 nm[J]. Applied Sciences, 2021, 11(18): 8608. doi: 10.3390/app11188608
    [65] LI Q, WAN M, LU Y H, et al. 1.9 W single-frequency, grating external-cavity tapered laser with narrow linewidth[J]. Proceedings of SPIE, 2019, 11170: 1117033.
    [66] TAWFIEQ M, MüLLER A, FRICKE J, et al. 5.5 nm wavelength-tunable high-power MOPA diode laser system at 971 nm[J]. Proceedings of SPIE, 2018, 10553: 105531F.
    [67] 林晓东, 钟祝强, 王会苹, 等. 单片集成半导体激光器的阵发混沌特性[J]. 光子学报,2018,47(5):0514004. doi: 10.3788/gzxb20184705.0514004

    LIN X D, ZHONG Z Q, WANG H P et al. Characteristics of Intermittent Chaos in a Monolithically Integrated Semiconductor Laser[J]. Acta Photonica Sinica, 2018, 47(5): 0514004. (in Chinese) doi: 10.3788/gzxb20184705.0514004
    [68] 匡尚奇, 郭祥帅, 冯玉玲, 等. 半导体激光器系统输出混沌激光研究进展[J]. 中国光学,2021,14(5):1133-1145. doi: 10.37188/CO.2020-0216

    KUANG S Q, GUO X S FENG Y L, et al. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. (in Chinese) doi: 10.37188/CO.2020-0216
    [69] PNIEL E, DALIN B, GOLOD S, et al. Types of filamentation in tapered diode amplifiers: their causes and features[J]. Optical and Quantum Electronics, 2015, 47(6): 1535-1544. doi: 10.1007/s11082-015-0163-9
    [70] SUJECKI S, BORRUEL L, WYKES J, et al. Nonlinear properties of tapered laser cavities[J]. IEEE Journal of selected topics in quantum electronics, 2003, 9(3): 823-834. doi: 10.1109/JSTQE.2003.818843
    [71] ODRIOZOLA H, TIJERO J, BORRUEL L, et al. Beam properties of 980-nm tapered lasers with separate contacts: Experiments and simulations[J]. IEEE journal of quantum electronics, 2008, 45(1): 42-50.
    [72] ODRIOZOLA H, TIJERO J, ESQUIVIAS I, et al. .Design of 1060 nm tapered lasers with separate contacts C]. Proceedings of 2008 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD), IEEE, 2008: 67-68.
    [73] ESQUIVIAS I, ODRIOZOLA H, TIJERO J, et al. Simulation of high brightness tapered lasers[J]. Proceedings of SPIE, 2010, 7616: 76161E. doi: 10.1117/12.841688
    [74] MEINECKE S, DRZEWIETZKI L, WEBER C, et al. Ultra-short pulse generation in a three section tapered passively mode-locked quantum-dot semiconductor laser[J]. Scientific Reports, 2019, 9(1): 1-14. doi: 10.1038/s41598-018-37186-2
    [75] ZHU H Q, ZHU H, YU CH R, et al. Modeling and improving the output power of terahertz master-oscillator power-amplifier quantum cascade lasers[J]. Optics Express, 2020, 28(16): 23239-23250. doi: 10.1364/OE.395227
    [76] BUGGE F, BEGE R, BLUME G, et al. Lifetime behavior of laser diodes with highly strained InGaAs QWs and emission wavelength between 1120 nm and 1180 nm[J]. Journal of Crystal Growth, 2018, 491: 31-35. doi: 10.1016/j.jcrysgro.2018.03.034
    [77] 李景, 邱运涛, 曹银花, 等. 高亮度锥形半导体激光器[J]. 发光学报,2016,37(8):990-995. doi: 10.3788/fgxb20163708.0990

    LI J, QIU Y T, CAO Y H et al. High Brightness Tapered Diode Laser[J]. Chinese Journal of Luminescence, 2016, 37(8): 990-995. (in Chinese) doi: 10.3788/fgxb20163708.0990
    [78] 孙胜明, 范杰, 徐莉, 等. 976 nm 锥形半导体激光器结构设计与优化[J]. 红外与激光工程,2017,46(12):1205004. doi: 10.3788/IRLA201746.1205004

    SUN S M, FAN J, XU L, et al. Design and optimization of 976 nm tapered semiconductor laser[J]. Infrared and Laser Engineering, 2017, 46(12): 1205004. (in Chinese) doi: 10.3788/IRLA201746.1205004
    [79] DITTMAR F, KLEHR A, SUMPF B, et al. 9-W output power from an 808-nm tapered diode laser in pulse mode operation with nearly diffraction-limited beam quality[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13(5): 1194-1199. doi: 10.1109/JSTQE.2007.902838
    [80] FAUGERON M, TRAN M, PARILLAUD O, et al. High-power tunable dilute mode DFB laser with low RIN and narrow linewidth[J]. IEEE photonics technology letters, 2012, 25(1): 7-10.
    [81] TIJERO J M G, ODRIOZOLA H, BORRUEL L, et al. Enhanced brightness of tapered laser diodes based on an asymmetric epitaxial design[J]. IEEE Photonics Technology Letters, 2007, 19(20): 1640-1642. doi: 10.1109/LPT.2007.905083
    [82] ZHANG J, MA X L, ZHOU X Y, et al. Mode engineering of semiconductor lasers with vertical periodic layered structures[J]. Journal of Physics D:Applied Physics, 2021, 55(6): 065102.
    [83] WANG L J, LI ZH, TONG C ZH, et al. Near-diffraction-limited Bragg reflection waveguide lasers[J]. Applied Optics, 2018, 57(34): F15-F21. doi: 10.1364/AO.57.000F15
    [84] MA X L, QU H, QI A, et al. High power tapered lasers with optimized photonic crystal structure for low divergence and high efficiency[J]. Semiconductor Science and Technology, 2018, 33(4): 045010. doi: 10.1088/1361-6641/aab141
    [85] ZHOU X Y, MA X L, QU H W, et al. Extremely high-brightness tapered photonic crystal diode laser with narrow-emitting aperture[J]. Applied Physics Express, 2019, 12(9): 094004. doi: 10.7567/1882-0786/ab2eee
    [86] LI Y, DU W CH, KUN ZH, et al. High-brightness tapered laser diodes with photonic crystal structures[J]. Proceedings of SPIE, 2017, 10697: 106974Y.
    [87] PATEL S J, JARIWALA A, PANCHAL C, et al. Suppression of Optical Feedback in Laser Diodes Using Multilayered Broad-band Ultra-low Reflective Facets-coating[J]. Journal of Nano- and Electronic Physics, 2020, 12(2): 02030.
    [88] 刘翠翠, 林楠, 熊聪, 等. Si杂质扩散诱导InGaAs/AlGaAs量子阱混杂的研究[J]. 中国光学,2020,13(1):203-216. doi: 10.3788/co.20201301.0203

    LIU C C, LIN N, XIONG C, et al. Intermixing in InGaAs/AlGaAs quantum well structures induced by the interdiffusion of Si impurities[J]. Chinese Optics, 2020, 13(1): 203-216. (in Chinese) doi: 10.3788/co.20201301.0203
    [89] WANG Y CH, QU H W, WANG Y F, et al. Radio Frequency Plasma-Enhanced Reactive Magnetron Sputtering Deposition of α-SiN x on Photonic Crystal—Laser Diodes for Facet Passivation[J]. ACS omega, 2019, 4(23): 20205-20211. doi: 10.1021/acsomega.9b02452
    [90] 范智斌, 陈泽茗, 周鑫, 等. 氮化硅光子器件与应用研究进展[J]. 中国光学,2021,14(4):998-1018. doi: 10.37188/CO.2021-0093

    FAN ZH B, CHEN Z M, ZHOU X, et al. Recent advances in silicon nitride-based photonic devices and applications[J]. Chinese Optics, 2021, 14(4): 998-1018. (in Chinese) doi: 10.37188/CO.2021-0093
    [91] FIEBIG C, EPPICH B, PASCHKE K, et al. High-brightness 980-nm tapered laser—Optimization of the laser rear facet[J]. IEEE Photonics Technology Letters, 2010, 22(5): 341-343. doi: 10.1109/LPT.2009.2039348
    [92] SUMPF B, HASLER K-H, ADAMIEC P, et al. 1060 nm DBR tapered lasers with 12 W output power and a nearly diffraction limited beam quality[J]. Proceedings of SPIE, 2009, 7230: 72301E. doi: 10.1117/12.806690
    [93] MÜLLER A, ZINK C, GINOLAS A, et al. .10.5 W central lobe output power obtained with an efficient 1030 nm DBR tapered diode laser C]. Proceedings of 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), IEEE, 2017: 61-62.
    [94] MÜLLER A, ZINK C, FRICKE J, et al. 1030nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of SPIE, 2017, 10123: 101231B.
    [95] VILERA M, PÉREZ-SERRANO A, TIJERO J, et al. Emission Characteristics of a 1.5um All-Semiconductor Tapered Master Oscillator Power Amplifier[J]. IEEE Photonics Journal, 2015, 7(2): 1500709.
    [96] 李璟, 刘媛媛, 马骁宇, 等. 电极分离的 980nm 锥形激光器的研制[J]. 半导体学报,2007,28(5):645-650.

    LI J, MA X Y, LIU Y Y, et al. High-Power Ridge-Waveguide Tapered Diode Lasers at 980nm[J]. Journal of semiconductors, 2007, 28(5): 645-650. (in Chinese)
    [97] 曼玉选, 仲莉, 马骁宇, 等. 975 nm 分离电极锥形半导体激光器特性分析[J]. 中国激光,2021,48(17):1701005. doi: 10.3788/CJL202148.1701005

    MAN Y X, ZHONG L, MA X Y, et al. Characteristic Analysis of 975 nm Conical Semiconductor Laser with Separated Electrode[J]. Chinese Journal of Lasers., 2021, 48(17): 1701005. (in Chinese) doi: 10.3788/CJL202148.1701005
    [98] PASCHKE K, SUMPF B, DITTMAR F, et al. Nearly diffraction limited 980-nm tapered diode lasers with an output power of 7.7 W[J]. IEEE Journal of selected topics in quantum electronics, 2005, 11(5): 1223-1227. doi: 10.1109/JSTQE.2005.853840
    [99] ALBRODT P, HANNA M, MORON F, et al. .Coherent beam combining of high-power tapered amplifiers[C]. Proceedings of 2017 IEEE High Power Diode Lasers and Systems Conference (HPD), IEEE, 2017: 15-16.
    [100] ALBRODT P, NIEMEYER M, CRUMP P, et al. Coherent beam combining of high power quasi continuous wave tapered amplifiers[J]. Optics Express, 2019, 27(20): 27891-27901. doi: 10.1364/OE.27.027891
    [101] JEDRZEJCZYK D, BROX O, BUGGE F, et al. High-power distributed-feedback tapered master-oscillator power amplifiers emitting at 1064 nm[J]. Proceedings of SPIE, 2010, 7583: 758317. doi: 10.1117/12.842001
    [102] FIEBIG C, PEKAREK S, PASCHKE K, et al. High-brightness distributed-Bragg-reflector tapered diode lasers: pushing your application to the next level[J]. Proceedings of SPIE, 2011, 7918: 79180R. doi: 10.1117/12.873362
    [103] SUMPF B, THEURER L S, MAIWALD M, et al. Comparison of electro-optical, spectral, and spatial beam parameters of 785nm DBR tapered lasers with different grating lengths[J]. Proceedings of SPIE, 2022, 12021: 120210H.
    [104] AHO A, VIHERIäLä J, VIRTANEN H, et al. High peak power laser diodes at 1.5 um with integrated wavelength locking element (Conference Presentation)[J]. Proceedings of SPIE, 2020, 11262: 112620E.
    [105] MüLLER A, ZINK C, FRICKE J, et al. Efficient, high brightness 1030 nm DBR tapered diode lasers with optimized lateral layout[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(6): 1-7.
    [106] LI Y, ZHOU K, HE L, et al. Structural design of mode propagation interface for tapered laser diodes[J]. Proceedings of SPIE, 2020, 11717: 117172H.
    [107] FIEBIG C, FEISE D, EPPICH B, et al. Tapered diode laser with reverse bias absorber section[J]. IEEE Photonics Technology Letters, 2009, 21(23): 1755-1757. doi: 10.1109/LPT.2009.2032781
    [108] KASPARI C, BLUME G, FEISE D, et al. Optimisation of 660 nm high-power tapered diode lasers[J]. IET optoelectronics, 2011, 5(3): 121-127. doi: 10.1049/iet-opt.2010.0034
    [109] ZINK C, MAIWALD M, WENZEL H, et al. .Monolithic master oscillator with tapered power amplifier diode laser at 1060 nm with additional control section for high power operation[C]. Proceedings of the European Conference on Lasers and Electro-Optics 2019, OSA, 2019: cb_3_1.
    [110] CAMPBELL J, LABRECQUE M, RENNER D, et al. .2.7 W continuous wave nearly-diffraction-limited output 1550 nm tapered laser diode amplifier[C]. Proceedings of the 27th International Semiconductor Laser Conference (ISLC), IEEE, 2021: 1-2.
    [111] SUMPF B, PASCHKE K. Spectrally stabilized high-power high-brightness DBR-tapered lasers in the VIS and NIR range[J]. Proceedings of SPIE, 2018, 10518: 1051817.
    [112] SUMPF B, HASLER K H, ADAMIEC P, et al. High-brightness quantum well tapered lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2009, 15(3): 1009-1020. doi: 10.1109/JSTQE.2008.2010952
  • 加载中
图(11) / 表(5)
计量
  • 文章访问数:  1010
  • HTML全文浏览量:  618
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-07
  • 修回日期:  2022-03-22
  • 网络出版日期:  2022-05-16

目录

    /

    返回文章
    返回