-
摘要:
为满足实验室条件下长时间、高精度的热流密度测量要求,基于电替代测量原理研制了一种新型辐射热流计,该型辐射热流计可通过自校准的方式溯源至国际单位制单位。本文简述了辐射热流计的系统构成,结合辐射热流计的测量原理,分析并计算了辐射热流计自校准过程中9项影响量的测量不确定度和合成标准不确定度。通过与中国计量科学院所标定的标准探测器比对,计算了辐射热流计的不确定度,最后根据实验数据及分析结果为该型热流计的优化设计提供了参考。实验结果表明:辐射热流计的相对标准不确定度优于0.26%,与标准探测器的归一化偏差为0.60,验证了不确定度评估结果。实验结果将为辐射热流计下一阶段的研制提供有效参考。
Abstract:In order to meet the requirements of long and highly precise heat flux measurement under laboratory conditions, a new radiative heat flux meter was developed based on the principle of electrical substitution measurement. The radiative heat flux meter can be traced to the International System of Units through self-calibration. Firstly, the system structure of the radiative heat flux meter is briefly described. Combining with the measuring principle of the radiative heat-flux meter, the measurement uncertainty of nine uncertainty components and their combined standard uncertainty in the process of radiative heat-flux meter self-calibration are analyzed and calculated. Then, the uncertainty of a radiometric heat-flux meter is verified by direct comparison with a standard detector calibrated by the National Institute of Metrology of China. Finally, according to the experimental data and analysis results, this paper provides a reference for the optimization design of the heat-flux meter. The experimental results show that the relative standard uncertainty of the radiative heat-flux meter is better than 0.26%, and the normalized error is 0.60, which verifies the validity of the uncertainty evaluation results. The experimental results will guide the development of radiative heat flow meters in the next stage and further improve its performance.
-
Key words:
- radiation heat flux /
- heat-flux meter /
- self-calibration /
- uncertainty /
- comparison
-
表 1 吸收比测量结果
Table 1. Measurement results of absorptance
黑体腔信号电压UC/V 白板信号电压US/V 背景信号电压UB/V 白板反射率${\rho _{\rm{S}}}$ 均值 不确定度 均值 不确定度 均值 不确定度 均值 不确定度 0.03753 4×10−5 8.87058 1.284×10−4 0.02479 4×10−5 0.95 0.05 表 2 光阑直径测量结果
Table 2. Measurement results of the aperture’s diameter
项目 D/mm 方向1 2.220 方向2 2.221 方向3 2.219 方向4 2.220 均值 2.220 表 3 加热电压采样值的不确定度
Table 3. Uncertainty of the sampling value of the heating voltage
加热电压 u(ADr)/V u(Vrefm)/V u(VerfT)/V u(ADS)/V u(Verfs)/V 均值/V u(U)/V ur(U)/V 第一阶段 0.0001635 5×10−6 4×10−6 0.000542 4.5571×10−6 0.69 0.000566 0.082% 第二阶段 0.0001635 5×10−6 4×10−6 0.000438 4.5571×10−6 2.19 0.000468 0.021% 表 4 加热丝电阻的不确定度
Table 4. Uncertainty of resistance of the heating wire
u(Rm)/Ω u(RS)/Ω 均值/Ω u(R)/Ω ur(R)/Ω 0.000015 0.00314 477.8 0.00314 0.00066% 表 5 热电采样码值的不确定度
Table 5. Uncertainty of the thermoelectric sampling code value
Mstatei Mstatei+1 Mtext 均值 172.1429 1731.18 513.9392 标准不确定度 0.15498 0.24591 0.0017 相对不确定度 0.09% 0.014% 0.003% 表 6 衍射参数定义
Table 6. Diffraction parameter definitions
r/mm ds/mm rd/mm dd/mm R/mm v0 σ u v vs vd 175 100 4 2 1 $ {\rm{Max} }\left( { {v_{\rm{s}}},{v_{\rm{d}}} } \right)$ $\dfrac{ { {\rm{Min} }\left( { {v_{\rm{s}}},{v_{\rm{d}}} } \right)} }{ { {\rm{Max} }\left( { {v_{\rm{s}}},{v_{\rm{d}}} } \right)} }$ $u = \dfrac{ {2\text{π} } }{\lambda }{R^2}\left( {\dfrac{1}{ { {d_{\rm{d} } } } } - \dfrac{1}{ { {d_{\rm{s} } } } } } \right)$ $ {v_0}(1 + \sigma x) $ $ \dfrac{ {2{\text{π}} } }{\lambda }\dfrac{ {R{r_{\rm{s}}} } }{ { {d_{\rm{s}}} } }$ ${v_d} = \dfrac{ {2{\text{π}} } }{\lambda }\dfrac{ {R{r_{\rm{d}}} } }{ { {d_{\rm{d}}} } }$ 表 7 功率测试结果
Table 7. Test results of power
测量次数 辐射热流计样机功率
测量结果/mW标准探测器功率
测量结果/mW1 0.98081 0.98886 2 0.98070 0.98889 3 0.98012 0.98885 4 0.98006 0.98887 5 0.97908 0.98890 6 0.97942 0.98893 7 0.97931 0.98890 8 0.98024 0.98891 9 0.97977 0.98891 10 0.97884 0.98891 11 0.97931 0.98890 12 0.97832 0.98890 均值 0.97967 0.98889 -
[1] 孙培杰, 王东保, 杨帆, 等. 运载高空发动机喷流热环境分析及飞行验证[J]. 上海航天,2016,33(S1):23-28. doi: 10.19328/j.cnki.1006-1630.2016.S1.005SUN P J, WANG D B, YANG F, et al. Numerical simulation and flight test validation of a launch vehicle altitude engine exhaust plume base heating[J]. Aerospace Shanghai, 2016, 33(S1): 23-28. (in Chinese) doi: 10.19328/j.cnki.1006-1630.2016.S1.005 [2] ZHOU K B, LIU N A, ZHANG L H, et al. Thermal radiation from fire whirls: revised solid flame model[J]. Fire Technology, 2014, 50(6): 1573-1587. doi: 10.1007/s10694-013-0360-7 [3] 余晓娅, 刘立拓, 李瑞, 等. 高超声速再入试验的辐射光谱定量测量[J]. 中国光学,2020,13(1):87-94. doi: 10.3788/co.20201301.0087YU X Y, LIU L T, LI R, et al. Measurements of absolute radiative emissions for supersonic reentry[J]. Chinese Optics, 2020, 13(1): 87-94. (in Chinese) doi: 10.3788/co.20201301.0087 [4] 闫指江, 沈丹, 吴彦森, 等. 多喷管运载火箭底部热环境研究[J]. 导弹与航天运载技术,2021(1):105-109,114. doi: 10.7654/j.issn.1004-7182.20210120YAN ZH J, SHEN D, WU Y S, et al. Research on the base heating environment of a multi-nozzle heavy launch vehicle[J]. Missiles and Space Vehicles, 2021(1): 105-109,114. (in Chinese) doi: 10.7654/j.issn.1004-7182.20210120 [5] 绳春晨, 胡芃, 程晓舫, 等. 保护法瞬态辐射热流计原理及瞬态响应特性[J]. 太阳能学报,2017,38(4):1092-1906.SHENG CH CH, HU P, CHENG X F, et al. Principle and transient response characteristics of protection transient radiant heat flux meter[J]. Acta Energiae Solaris Sinica, 2017, 38(4): 1092-1906. (in Chinese) [6] GIFFORD A R, HUBBLE D O, PULLINS C A, et al. Durable heat flux sensor for extreme temperature and heat flux environments[J]. Journal of Thermophysics and Heat Transfer, 2010, 24(1): 69-76. doi: 10.2514/1.42298 [7] 高庆华, 郄殿福. 热流测量技术发展综述[J]. 航天器环境工程,2020,37(3):218-227. doi: 10.12126/see.2020.03.002GAO Q H, QIE D F. The development of heat flux measurement technology[J]. Spacecraft Environment Engineering, 2020, 37(3): 218-227. (in Chinese) doi: 10.12126/see.2020.03.002 [8] MURTHY A V, TSAI B K, GIBSON C E. Calibration of high heat flux sensors at NIST[J]. Journal of Research of the National Institute of Standards and Technology, 1997, 102(4): 479-488. doi: 10.6028/jres.102.032 [9] 张磊, 谢贤忱, 吴勇, 等. 激光吸收涂层性能研究[J]. 中国光学,2021,14(3):560-565. doi: 10.37188/CO.2020-0154ZHANG L, XIE X CH, WU Y, et al. Performance studies on laser absorbing coating[J]. Chinese Optics, 2021, 14(3): 560-565. (in Chinese) doi: 10.37188/CO.2020-0154 [10] 田玉坤, 何钦华, 吴江, 等. Gardon式热流传感器测试误差分析[J]. 强度与环境,2019,46(2):48-55. doi: 10.19447/j.cnki.11-1773/v.2019.02.009TIAN Y K, HE Q H, WU J, et al. Test error analysis of Gardon heat flux gauges[J]. Structure &Environment Engineering, 2019, 46(2): 48-55. (in Chinese) doi: 10.19447/j.cnki.11-1773/v.2019.02.009 [11] 李建玉, 刘庆, 徐文清, 等. 用于多波段激光大气透过率测量的太阳辐射计[J]. 光学 精密工程,2020,28(2):261-270.LI J Y, LIU Q, XU W Q, et al. Solar radiometer for measurement of multi-waveband laser atmospheric transmittance[J]. Optics and Precision Engineering, 2020, 28(2): 261-270. (in Chinese) [12] SHARKOV A V, KORABLEV V A, NEKRASOV A S, et al. A radiometer for measuring high-intensity heat flux density and a method of calibrating it[J]. Measurement Techniques, 2012, 54(11): 1276-1279. doi: 10.1007/s11018-012-9876-3 [13] PULLINS C A. High temperature heat flux measurement: sensor design, calibration, and applications[D]. Blacksburg: Virginia Polytechnic Institute and State University, 2011. [14] 杨滨赫, 蔡引娣, 文志祥, 等. 长距离激光测量中光束漂移的自动补偿[J]. 光学 精密工程,2020,28(11):2393-2402. doi: 10.37188/OPE.20202811.2393YANG B H, CAI Y D, WEN ZH X, et al. Automatic compensation method for beam drift in long-distance laser measurement[J]. Optics and Precision Engineering, 2020, 28(11): 2393-2402. (in Chinese) doi: 10.37188/OPE.20202811.2393 [15] 衣小龙, 杨振岭, 叶新, 等. 低温辐射计斜底腔吸收比测量[J]. 光学 精密工程,2015,23(10):2733-2739. doi: 10.3788/OPE.20152310.2733YI X L, YANG ZH L, YE X, et al. Absorptance measurement for sloping bottom cavity of cryogenic radiometer[J]. Optics and Precision Engineering, 2015, 23(10): 2733-2739. (in Chinese) doi: 10.3788/OPE.20152310.2733 [16] 衣小龙, 方伟, 林延东, 等. 空间低温绝对辐射初级基准实验特性及测量精度评估[J]. 光学 精密工程,2021,29(1):10-20. doi: 10.37188/OPE.20212901.0010YI X L, FANG W, LIN Y D, et al. Experimental characteristics and measurement accuracy evaluation of space cryogenic absolute radiometric primary benchmark[J]. Optics and Precision Engineering, 2021, 29(1): 10-20. (in Chinese) doi: 10.37188/OPE.20212901.0010 [17] 高帅, 李元, 白廷柱, 等. 交叉定标中的不确定度分析及定标系数计算改进[J]. 中国光学,2020,13(3):568-576.GAO SH, LI Y, BAI Y ZH, et al. Uncertainty analysis in cross-calibration and optimization calculation of calibration coefficients[J]. Chinese Optics, 2020, 13(3): 568-576. (in Chinese) [18] 刘国栋, 方伟, 宋宝奇, 等. 太阳辐射计的衍射效应修正[J]. 中国光学,2018,11(5):851-859. doi: 10.3788/co.20181105.0851LIU G D, FANG W, SONG B Q, et al. Diffraction effect correction of solar radiometer[J]. Chinese Optics, 2018, 11(5): 851-859. (in Chinese) doi: 10.3788/co.20181105.0851