留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究

杨舒涵 乔顺达 林殿阳 马欲飞

杨舒涵, 乔顺达, 林殿阳, 马欲飞. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文), 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029
引用本文: 杨舒涵, 乔顺达, 林殿阳, 马欲飞. 基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究[J]. 中国光学(中英文), 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029
YANG Shu-han, QIAO Shun-da, LIN Dian-yang, MA Yu-fei. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029
Citation: YANG Shu-han, QIAO Shun-da, LIN Dian-yang, MA Yu-fei. Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy[J]. Chinese Optics, 2023, 16(1): 151-157. doi: 10.37188/CO.2022-0029

基于可调谐半导体激光吸收光谱的氧气浓度高灵敏度检测研究

doi: 10.37188/CO.2022-0029
基金项目: 国家自然科学基金(No. 62022032,No. 61875047,No. 61505041);黑龙江省优秀青年科学基金(No. YQ2019F006);黑龙江省博士后科研启动金(No. LBH-Q18052);中央高校基本科研业务费专项资金
详细信息
    作者简介:

    杨舒涵(1999—),女,吉林四平人,硕士研究生,2021于哈尔滨工业大学获得学士学位,主要研究方向为激光光谱技术。E-mail:yangshuhan@stu.hit.edu.cn

    马欲飞(1984—),男,教授,博士,籍贯甘肃省庆阳市,2013年于哈尔滨工业大学获得博士学位,曾在美国莱斯大学进行联合培养,主要研究方向为激光光谱技术及应用。E-mail:mayufei@hit.edu.cn

  • 中图分类号: O433.4

Research on highly sensitive detection of oxygen concentrations based on tunable diode laser absorption spectroscopy

Funds: Supported by the National Outstanding Youth Science Fund of China (No. 62022032), National Natural Science Foundation of China (No. 61875047 and No. 61505041), Natural Science Foundation of Heilongjiang Province of China (No. YQ2019F006), Financial Grant from the Heilongjiang Province Postdoctoral Foundation (No. LBH-Q18052), Fundamental Research Funds for the Central Universities
More Information
  • 摘要:

    可调谐半导体激光吸收光谱(TDLAS)是近年发展起来的一种激光光谱气体检测技术,相比于常见的电化学、离子导电陶瓷等技术,其具有选择性强、灵敏度高、响应快、可在线测量、抗背景光谱干扰能力强等优点,适用于复杂环境中气体的长期在线检测。氧气(O2)是人类生存环境中的重要气体,O2浓度的检测在生产生活各个领域应用广泛、意义重大。基于此,本文采用TDLAS技术对空气中的O2进行高灵敏度测量。采用输出波长为760 nm的半导体激光器作为光源,直接吸收光谱法获得环境中的氧气浓度为20.56%,最小检测极限为5.53×10−3。在波长调制方法中,优化了激光波长调制深度,得到了完整的二次谐波波形,可用于标定氧气浓度。此系统的信噪比为380.74,最小检测极限约为540×10−6。本文的传感系统具有良好的O2检测能力,可广泛用于各个领域中的O2浓度检测。

     

  • 图 1  TDLAS测量系统结构示意图

    Figure 1.  Structure diagram of TDLAS measurement system

    图 2  基于HITRAN2020数据库仿真的O2吸收谱线

    Figure 2.  O2 absorption line based on the HITRAN2020 database

    图 3  激光器输出功率与电流关系曲线

    Figure 3.  Relationship between laser output power and the injected current

    图 4  不同拟合阶数时S-G滤波结果

    Figure 4.  S-G filtering results for different orders

    图 5  不同窗口长度时S-G滤波结果

    Figure 5.  S-G filtering results for different window lengths

    图 6  多项式拟合参考光基线

    Figure 6.  The baseline of the reference light fitted by a polynomial

    图 7  291 K温度下空气中O2的吸收光谱图

    Figure 7.  Absorption spectra of oxygen in air at 291 K

    图 8  TDLAS系统信号幅值随调制深度的变化关系

    Figure 8.  The variation of the TDLAS signal amplitude with modulation depth

    图 9  TDLAS 2f信号与噪声

    Figure 9.  2f signal and noise for the TDLAS system

  • [1] 隋丽丽, 黄微微, 王平, 等. 原位生长的α-Fe2O3/ZnO异质纳米棒阵列对乙醇气体的高选择性检测[J]. 应用化学,2021,38(7):857-865.

    SUI L L, HUANG W W, WANG P, et al. In situ deposited heterogeneous α-Fe2O3/ZnO nanorod arrays for highly selective detection of ethanol[J]. Chinese Journal of Applied Chemistry, 2021, 38(7): 857-865. (in Chinese)
    [2] 伞晓广, 巩晓辉, 陆一鸣, 等. NiO-WO3纳米立方块的制备及在甲醛检测中的应用[J]. 应用化学,2020,37(10):1203-1210. doi: 10.11944/j.issn.1000-0518.2020.10.200059

    SAN X G, GONG X H, LU Y M, et al. Synthesis of NiO-WO3 nanocubes and their application in detecting formaldehyde[J]. Chinese Journal of Applied Chemistry, 2020, 37(10): 1203-1210. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.10.200059
    [3] 李佳祁, 付大友, 王竹青, 等. 基于气液相化学发光技术的臭氧在线检测方法[J]. 应用化学,2020,37(1):96-102. doi: 10.11944/j.issn.1000-0518.2020.01.190136

    LI J Q, FU D Y, WANG ZH Q, et al. Online ozone detection method based on gas-liquid phase chemiluminescence technology[J]. Chinese Journal of Applied Chemistry, 2020, 37(1): 96-102. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.01.190136
    [4] KOCACHE R. The measurement of oxygen on gas mixtures[J]. Journal of Physics E:Scientific Instruments, 1986, 19(6): 401-410. doi: 10.1088/0022-3735/19/6/001
    [5] KOCACHE R M A, SWAN J, HOLMAN D F. A miniature rugged and accurate solid electrolyte oxygen sensor[J]. Journal of Physics E:Scientific Instruments, 1984, 17(6): 477-482. doi: 10.1088/0022-3735/17/6/014
    [6] MERILÄINEN P T. Sensors for oxygen analysis: paramagnetic, electrochemical, polarographic, and zirconium oxide technologies[J]. Biomedical Instrumentation &Technology, 1989, 23(6): 462-466.
    [7] 刘云燕, 潘教青, 程传福, 等. 半导体激光器在氧气探测中的应用及关键技术[J]. 激光与红外,2011,41(5):501-505. doi: 10.3969/j.issn.1001-5078.2011.05.004

    LIU Y Y, PAN J Q, CHENG CH F, et al. Application and key technologies of semiconductor laser in the detection of oxygen[J]. Laser &Infrared, 2011, 41(5): 501-505. (in Chinese) doi: 10.3969/j.issn.1001-5078.2011.05.004
    [8] 谢耀, 华道柱, 齐宇, 等. GFC-IFC技术在多组分微量气体分析中的应用[J]. 中国光学,2021,14(6):1378-1386. doi: 10.37188/CO.2021-0064

    XIE Y, HUA D ZH, QI Y, et al. Applications of GFC-IFC in trace multi-component gas analysis[J]. Chinese Optics, 2021, 14(6): 1378-1386. (in Chinese) doi: 10.37188/CO.2021-0064
    [9] MA Y F, HE Y, TONG Y, et al. Quartz-tuning-fork enhanced photothermal spectroscopy for ultra-high sensitive trace gas detection[J]. Optics Express, 2018, 26(24): 32103-32110. doi: 10.1364/OE.26.032103
    [10] MA Y F, LEWICKI R, RAZEGHI M, et al. QEPAS based ppb-level detection of CO and N2O using a high power CW DFB-QCL[J]. Optics Express, 2013, 21(1): 1008-1019. doi: 10.1364/OE.21.001008
    [11] 张步强, 许振宇, 刘建国, 等. 基于波长调制技术的激光器调制特性研究[J]. 光谱学与光谱分析,2019,39(9):2702-2707.

    ZHANG B Q, XU ZH Y, LIU J G, et al. Modulation characteristics of laser based on wavelength modulation technology[J]. Spectroscopy and Spectral Analysis, 2019, 39(9): 2702-2707. (in Chinese)
    [12] 钟笠, 宋迪, 焦月, 等. 具有复杂光谱特征的丙烯气体的TDLAS检测技术研究[J]. 中国光学,2020,13(5):1044-1054. doi: 10.37188/CO.2019-0203

    ZHONG L, SONG D, JIAO Y, et al. TDLAS detection of propylene with complex spectral features[J]. Chinese Optics, 2020, 13(5): 1044-1054. (in Chinese) doi: 10.37188/CO.2019-0203
    [13] SCHLOSSER H E, WOLFROM J, EBERT V, et al. In situ determination of molecular oxygen concentrations in full-scale fire-suppression tests using tunable diode laser absorption spectroscopy[J]. Proceedings of the Combustion Institute, 2001: 353-360.
    [14] 张春晓. 基于可调谐半导体激光吸收光谱技术的O2和CO气体测量[D]. 杭州: 浙江大学, 2010: 86.

    ZHANG CH X. O2 and CO sensing based on tunable diode laser absorption spectroscopy[D]. Hangzhou: Zhejiang University, 2010: 86. (in Chinese)
    [15] GAO Y W, ZHANG Y J, CHEN D, et al. Real-time O2 measurement in a cement kiln with a TDLAS analyzer[J]. Proceedings of the SPIE, 2016, 10155: 101552R.
    [16] ZHOU X, YU J, WANG L, et al. Sensitive detection of oxygen using a diffused integrating cavity as a gas absorption cell[J]. Sensors and Actuators B:Chemical, 2017, 241: 1076-1081. doi: 10.1016/j.snb.2016.10.033
    [17] 臧益鹏, 聂伟, 许振宇, 等. 基于可调谐二极管激光吸收光谱的痕量水汽测量[J]. 光学学报,2018,38(11):1130004. doi: 10.3788/AOS201838.1130004

    ZANG Y P, NIE W, XU ZH Y, et al. Measurement of trace water vapor based on tunable diode laser absorption spectroscopy[J]. Acta Optica Sinica, 2018, 38(11): 1130004. (in Chinese) doi: 10.3788/AOS201838.1130004
    [18] 袁志国, 马修真, 刘晓楠, 等. 利用可调谐激光吸收光谱技术的柴油机排放温度测试研究[J]. 中国光学,2020,13(2):281-289. doi: 10.3788/co.20201302.0281

    YUAN ZH G, MA X ZH, LIU X N, et al. Testing on diesel engine emission temperature using tunable laser absorption spectroscopy technology[J]. Chinese Optics, 2020, 13(2): 281-289. (in Chinese) doi: 10.3788/co.20201302.0281
    [19] 邓瑶, 唐雯, 李峥辉, 等. 基于直接吸收峰峰值标定的气体浓度反演方法研究[J]. 激光与光电子学进展,2021,58(3):0330002.

    DENG Y, TANG W, LI ZH H, et al. Gas concentration inversion method based on calibration of direct absorption peak value[J]. Laser &Optoelectronics Progress, 2021, 58(3): 0330002. (in Chinese)
  • 加载中
图(9)
计量
  • 文章访问数:  1185
  • HTML全文浏览量:  338
  • PDF下载量:  363
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-01
  • 修回日期:  2022-03-22
  • 网络出版日期:  2022-06-16

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!