留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有横向效应的半导体激光器的同步传输技术

赵丽娜 魏庆涛

赵丽娜, 魏庆涛. 具有横向效应的半导体激光器的同步传输技术[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0031
引用本文: 赵丽娜, 魏庆涛. 具有横向效应的半导体激光器的同步传输技术[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0031
ZHAO Li-na, WEI Qing-tao. Synchronization transmission technology of semiconductor lasers with transverse effect[J]. Chinese Optics. doi: 10.37188/CO.2022-0031
Citation: ZHAO Li-na, WEI Qing-tao. Synchronization transmission technology of semiconductor lasers with transverse effect[J]. Chinese Optics. doi: 10.37188/CO.2022-0031

具有横向效应的半导体激光器的同步传输技术

doi: 10.37188/CO.2022-0031
基金项目: 辽宁省教育厅科学研究面上项目(No. LJKZ1354)
详细信息
    作者简介:

    赵丽娜(1982—),女,辽宁大连人,博士,副教授,主要从事非线性光学以及光通信方面的研究。E-mail:zhaolndust@aliyun.com

  • 中图分类号: O439

Synchronization transmission technology of semiconductor lasers with transverse effect

Funds: Supported by Scientific Research Project of Education Department of Liaoning Province (Project No. LJKZ1354)
More Information
  • 摘要: 为了考虑半导体激光器的横向效应,通过修正描述半导体激光器的动力学模型,给出了具有横向效应的半导体激光器的动力学方程,并分析了横向效应对半导体激光器输出特性的影响。在此基础上,进一步研究了具有横向效应的半导体激光器输出信号的同步传输技术。结果表明,考虑横向效应后,半导体激光器的输出呈现新的时空混沌态,且对初始值的依赖非常敏感。同时,无论是利用半导体激光器进行单通道信号的同步传输还是多通道信号的同步传输,其传输性能均十分稳定。该项同步技术十分简约,非常易于实际应用。

     

  • 图 1  方程(2)的Lyapunov指数

    Figure 1.  Lyapunov exponent of equation (2)

    图 2  混沌吸引子(c=0.73)

    Figure 2.  chaotic attractor (c=0.73)

    图 3  激光输出随时间的演化(c=0.73)

    Figure 3.  evolution of laser output with time (c=0.73)

    图 4  混沌吸引子(c=−2)

    Figure 4.  chaotic attractor (c=−2)

    图 5  激光输出随时间的演化(c=−2)

    Figure 5.  evolution of laser output with time (c=−2)

    图 6  半导体激光器输出随时空演化曲线

    Figure 6.  evolution curve of semiconductor laser output with time and space

    图 7  耦合系统的最大Lyapunov指数

    Figure 7.  maximum Lyapunov exponent of the coupled system

    图 8  两个半导体激光器状态变量之间的误差$ {e_1}(r,t) $

    Figure 8.  error $ {e_1}(r,t) $ between state variables of two semiconductor lasers

    图 9  两个半导体激光器状态变量之间的误差$ {e_2}(r,t) $

    Figure 9.  error$ {e_2}(r,t) $between state variables of two semiconductor lasers

    图 10  两个半导体激光器状态变量之间的误差$ {e_3}(r,t) $

    Figure 10.  error$ {e_3}(r,t) $between state variables of two semiconductor lasers

    图 11  多通道信号传输

    Figure 11.  multi channel signal transmission

    图 12  耦合系统的最大Lyapunov指数随耦合强度gi (i=1, 2, 3, 4)的演化

    Figure 12.  evolution of the maximum Lyapunov exponent of coupled system with coupling strength gi (i=1, 2, 3, 4)

    图 13  耦合系统状态变量之间的误差${e_{ij}}(r,t)(i = 1,2,3,4\;\;j = 1,2,3)$

    Figure 13.  error ${e_{ij}}(r,t)(i = 1,2,3,4\;\;j = 1,2,3)$between the state variables of the coupling system

  • [1] MABHOUTI K, SAMADZADEH N. Effect of the frequency detuning on the stability analysis in a semiconductor laser subject to optical injection: Hopf and Routh-Horwitz conditions[J]. Iranian Journal of Physics Research, 2021, 21(1): 131-143.
    [2] QIAO X D, MIDYA B, GAO Z H, et al. Higher-dimensional supersymmetric microlaser arrays[J]. Science, 2021, 372(6540): 403-408. doi: 10.1126/science.abg3904
    [3] CABRERA L V P, REYES T F, MORET Y P, et al. Application of a temporal synchronization device for the study of laser-induced plasma spectroscopy in a multi-pulse regime[J]. Applied Optics, 2021, 60(6): 1574-1577. doi: 10.1364/AO.418367
    [4] FATAF N A A, RAHIM M F A, HE SH B, et al. A communication scheme based on fractional order chaotic laser for Internet of things[J]. Internet of Things, 2021, 15: 100425. doi: 10.1016/j.iot.2021.100425
    [5] SAEED N, ÇIÇEK S, CHAMGOUÉ A C, et al. Bistable and coexisting attractors in current modulated edge emitting semiconductor laser: control and microcontroller-based design[J]. Optical and Quantum Electronics, 2021, 53(6): 333. doi: 10.1007/s11082-021-02979-9
    [6] 匡尚奇, 郭祥帅, 冯玉玲, 等. 半导体激光器系统输出混沌激光研究进展[J]. 中国光学,2021,14(5):1133-1145. doi: 10.37188/CO.2020-0216

    KUANG SH Q, GUO X SH, FENG Y L, et al. Research progress of optical chaos in semiconductor laser systems[J]. Chinese Optics, 2021, 14(5): 1133-1145. (in Chinese) doi: 10.37188/CO.2020-0216
    [7] ZHAO X, LIU J, MOU J, et al. Characteristics of a laser system in complex field and its complex self-synchronization[J]. The European Physical Journal Plus, 2020, 135(6): 507. doi: 10.1140/epjp/s13360-020-00509-2
    [8] ROY A, MISRA A P, BANERJEE S. Synchronization in networks of coupled hyperchaotic CO2 lasers[J]. Physica Scripta, 2020, 95(4): 045225. doi: 10.1088/1402-4896/ab6e4d
    [9] BAZHANOVA M V, KRYLOVA N P, KAZANTSEV V B, et al. Synchronization in a network of spiking neural oscillators with plastic connectivity[J]. Radiophysics and Quantum Electronics, 2021, 63(4): 298-309.
    [10] URDAPILLETA E. Transition to synchronization in heterogeneous inhibitory neural networks with structured synapses[J]. Chaos, 2021, 31(3): 033151. doi: 10.1063/5.0038896
    [11] ZANOTTO F M, STEINBOCK O. Asymmetric synchronization in lattices of pinned spiral waves[J]. Physical Review E, 2021, 103(2): 022213. doi: 10.1103/PhysRevE.103.022213
    [12] DELELLIS P, GAROFALO F, LO IUDICE F. The partial pinning control strategy for large complex networks[J]. Automatica, 2018, 89: 111-116. doi: 10.1016/j.automatica.2017.11.025
    [13] MEDEIROS E S, MEDRANO-T R O, CALDAS I L, et al. The impact of chaotic saddles on the synchronization of complex networks of discrete-time units[J]. Journal of Physics:Complexity, 2021, 2(3): 035002. doi: 10.1088/2632-072X/abedc2
    [14] LÜ L, ZHANG F L, SUN A. Synchronization between uncertain spatiotemporal networks based on open-loop and closed-loop coupling technology[J]. Physica A, 2019, 526: 120712. doi: 10.1016/j.physa.2019.03.077
    [15] GHAFFARI A, AREBI S. Pinning control for synchronization of nonlinear complex dynamical network with suboptimal SDRE controllers[J]. Nonlinear Dynamics, 2016, 83(1-2): 1003-1013. doi: 10.1007/s11071-015-2383-8
    [16] TOOMEY J P, KANE D M. Mapping the dynamic complexity of a semiconductor laser with optical feedback using permutation entropy[J]. Optics Express, 2014, 22(2): 1713-1725. doi: 10.1364/OE.22.001713
    [17] WIECZOREK S, KRAUSKOPF B, LENSTRA D. Mechanisms for multistability in a semiconductor laser with optical injection[J]. Optics Communications, 2000, 183(1-4): 215-226. doi: 10.1016/S0030-4018(00)00867-1
    [18] CHLOUVERAKIS K E. Color maps of the Kaplan-Yorke dimension in optically driven lasers: maximizing the dimension and almost-Hamiltonian chaos[J]. International Journal of Bifurcation and Chaos, 2005, 15(9): 3011-3021. doi: 10.1142/S0218127405013848
    [19] LUGIATO L A, LEFEVER R. Spatial dissipative structures in passive optical systems[J]. Physical Review Letters, 1987, 58(21): 2209-2211. doi: 10.1103/PhysRevLett.58.2209
    [20] 海一娜, 邹永刚, 田锟, 等. 水平腔面发射半导体激光器研究进展[J]. 中国光学,2017,10(2):194-206. doi: 10.3788/co.20171002.0194

    HAI Y N, ZOU Y G, TIAN K, et al. Research progress of horizontal cavity surface emitting semiconductor lasers[J]. Chinese Optics, 2017, 10(2): 194-206. (in Chinese) doi: 10.3788/co.20171002.0194
    [21] 孙胜明, 范杰, 徐莉, 等. 锥形半导体激光器研究进展[J]. 中国光学,2019,12(1):48-58. doi: 10.3788/co.20191201.0048

    SUN SH M, FAN J, XU L, et al. Progress of tapered semiconductor diode lasers[J]. Chinese Optics, 2019, 12(1): 48-58. (in Chinese) doi: 10.3788/co.20191201.0048
    [22] 高月娟, 陈飞, 潘其坤, 等. 用于超短脉冲CO2激光的半导体光开关理论建模与数值分析[J]. 中国光学,2020,13(3):577-585.

    GAO Y J, CHEN F, PAN Q K, et al. Modeling and numerical simulation of a semiconductor switching device applied in an ultra-short pulse CO2 laser[J]. Chinese Optics, 2020, 13(3): 577-585. (in Chinese)
    [23] 叶余杰, 柯少颖, 吴金镛, 等. 横向收集结构锗硅半导体雪崩探测器的设计研究[J]. 中国光学,2019,12(4):833-842. doi: 10.3788/co.20191204.0833

    YE Y J, KE SH Y, WU J Y, et al. Design and research of Ge/Si avalanche photodiode with a specific lateral carrier collection structure[J]. Chinese Optics, 2019, 12(4): 833-842. (in Chinese) doi: 10.3788/co.20191204.0833
    [24] 陈洪宇, 王月飞, 闫珺, 等. 基于Se和有机无机钙钛矿异质结的宽光谱光电探测器制备及其光电特性研究[J]. 中国光学,2019,12(5):1057-1063. doi: 10.3788/co.20191205.1057

    CHEN H Y, WANG Y F, YAN J, et al. Fabrication and photoelectric properties of organic-inorganic broad-spectrum photodetectors based on Se microwire/perovskite heterojunction[J]. Chinese Optics, 2019, 12(5): 1057-1063. (in Chinese) doi: 10.3788/co.20191205.1057
  • 加载中
图(13)
计量
  • 文章访问数:  87
  • HTML全文浏览量:  47
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-06-16

目录

    /

    返回文章
    返回