留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微细正交切削过程原位观测中位移补偿方法

张向辉 于化东 许金凯 于占江 李一全 于浩洋

张向辉, 于化东, 许金凯, 于占江, 李一全, 于浩洋. 微细正交切削过程原位观测中位移补偿方法[J]. 中国光学(中英文), 2022, 15(3): 476-487. doi: 10.37188/CO.2022-0032
引用本文: 张向辉, 于化东, 许金凯, 于占江, 李一全, 于浩洋. 微细正交切削过程原位观测中位移补偿方法[J]. 中国光学(中英文), 2022, 15(3): 476-487. doi: 10.37188/CO.2022-0032
ZHANG Xiang-hui, YU Hua-dong, XU Jin-kai, YU Zhan-jiang, LI Yi-quan, YU hao-yang. Displacement compensation method for in-situ observation of micro orthogonal cutting process[J]. Chinese Optics, 2022, 15(3): 476-487. doi: 10.37188/CO.2022-0032
Citation: ZHANG Xiang-hui, YU Hua-dong, XU Jin-kai, YU Zhan-jiang, LI Yi-quan, YU hao-yang. Displacement compensation method for in-situ observation of micro orthogonal cutting process[J]. Chinese Optics, 2022, 15(3): 476-487. doi: 10.37188/CO.2022-0032

微细正交切削过程原位观测中位移补偿方法

基金项目: 吉林省重点研发项目(No. 20210201112GX);国家重点研发计划项目(No. 2018YFB1107400)
详细信息
    作者简介:

    张向辉(1986—),男,山东济宁人,博士研究生,实验员,2015年于长春理工大学获得硕士学位,主要从事精密超精密加工技术、微纳制造与检测技术方面的研究。E-mail:zhangxianghui0503@163.com

    于化东(1961—),男,吉林松原人,博士,教授,博士生导师,1983年、1988年于长春光学精密机械学院(现长春理工大学)分别获得学士、硕士学位,1998年于日本千叶大学获得博士学位,主要从事精密超精密加工技术、微纳制造与检测技术方面的研究。E-mail:yuhuadong@cust.edu.cn

  • 中图分类号: TP394.1;TH691.9

Displacement compensation method for in-situ observation of micro orthogonal cutting process

Funds: Supported by Key Research and Development Project of Jilin province (No. 20210201112GX); National Key Research and Development Program of China (No. 2018YFB1107400)
More Information
  • 摘要: 原位观测和数字图像相关(DIC)分析法逐步在金属切削加工过程的塑性变形分析中得到广泛应用,其测量分析过程直观准确,已经成为一种主要的材料变形分析手段。为了在金属微细正交切削原位显微成像分析时,既能获得大观测视野又能使位移场分析结果清晰直观,本文提出改进型图像尺寸压缩匹配搜索算法对图像序列间的位移偏差进行检测补偿,将切削工况由工件做进给运动转化为刀具做进给运动。与归一化积相关匹配搜索算法进行对比验证,结果显示,所提出算法在大幅度提高执行效率的同时还具有很高的搜索精度。最后,在图像序列间选取两张图像进行位移偏差补偿以及变形区位移场DIC分析,结果显示本文补偿方法可以对工件进给运动和外界环境中振动引起的位移偏差进行有效补偿,使得变形区位移场分析结果中工件材料间的相对运动趋势更为直观。

     

  • 图 1  微细正交切削观测系统

    Figure 1.  Micro orthogonal cutting observation system

    图 2  (a) 微细正交切削观测系统相关坐标系;(b)显微观测成像

    Figure 2.  (a) Corresponding coordinate system of micro orthogonal cutting observation system; (b) microscopic observation imaging

    图 3  变形前后图像之间的区域对应

    Figure 3.  Region correspondence between images before and after deformation

    图 4  数字图像归一化积相关模板全局匹配流程图

    Figure 4.  Flow chart of global template matching of digital image normalized cross correlation

    图 5  添加运动约束搜索图像截取流程图

    Figure 5.  Flow chart of search image capturing with motion constraint

    图 6  图像尺寸压缩匹配算法流程图

    Figure 6.  Flow chart of the image size compression matching algorithm

    图 7  变形前后图像间相对位移的补偿及DIC分析图像截取

    Figure 7.  Relative displacement compensation between images before and after deformation and interception of the image used in the DIC analysis

    图 8  (a-Ⅰ) 模板图像和(a-Ⅱ) 匹配搜索图像以及相应实验参数(ap=60 μm, vc=40 mm/min)

    Figure 8.  (a-Ⅰ) Template image and (a-Ⅱ) matching search image and employed experimental parameters

    图 9  NCC模板匹配算法全区域匹配结果及耗时

    Figure 9.  All-region matching results and time consumption obtained with NCC template matching algorithm

    图 10  搜索图像全区域相似系数分布图

    Figure 10.  The distribution map of the similarity coefficient in the whole area of the search image

    图 11  改进匹配搜索算法程序运行消耗时间

    Figure 11.  Time consumption of the improved matching search algorithm

    图 12  改进匹配搜索算法相对执行效率

    Figure 12.  The relative execution efficiency of the improved matching search algorithm

    图 13  改进的匹配搜索算法的匹配结果

    Figure 13.  Matching results obtained with the improved matching search algorithm

    图 14  图像序列间相对位移检测结果

    Figure 14.  Relative displacement detection results between image sequences

    图 15  位移补偿效果验证截取模板图像

    Figure 15.  Intercepted template image in the verification of the displacement detection compensation effect

    图 16  更新图像序列中二次模板匹配结果

    Figure 16.  The secondary template matching results in the updated image sequence

    图 17  更新图像序列中检测区域IVW和IVT上的相对位移量

    Figure 17.  The relative displacements between the detection regions IVW and IVT in the updated image sequence

    图 18  位移补偿前DIC分析变形区位移场分布结果。(a)列方向位移场变形参考图像中显示;(b)列方向位移场二维云图;(c)列方向位移场三维曲面图;(d)行方向位移场变形参考图像中显示;(e)行方向位移场二维云图;(f)行方向位移场三维曲面图

    Figure 18.  Displacement field distribution results of the deformation area without displacement compensation. (a) The column direction displacement field in the deformed reference image; (b) two-dimensional cloud map of the displacement field in the column direction; (c) surface plot of the column direction displacement field; (d) the row direction displacement field in the deformed reference image; (e) two-dimensional cloud map of the displacement field in the row direction; (f) surface plot of the row direction displacement field

    图 19  位移补偿后变形区位移场分布结果。(a)列方向位移场变形参考图像中显示;(b)列方向位移场二维云图;(c)列方向位移场三维曲面图;(d)行方向位移场变形参考图像中显示;(e)行方向位移场二维云图;(f)行方向位移场三维曲面图

    Figure 19.  Displacement field distribution results of the deformation area with displacement compensation. (a) The column direction displacement field in the deformed reference image; (b) two-dimensional cloud map of the displacement field in the column direction; (c) surface plot of column direction displacement field; (d) the row direction displacement field in the deformed reference image; (e) two-dimensional cloud map of displacement field in the row direction; (f) surface plot of row direction displacement field

  • [1] 程凯, 霍德鸿. 微切削技术基础与应用[M]. 丁辉, 译. 北京: 机械工业出版社, 2015.

    CHENG K, HUO D H. Micro-Cutting Fundamentals and Applications[M]. DING H, trans. Beijing: Machinery Industry Press, 2015. (in Chinese)
    [2] CHAMBERS D. Digital Image Correlation: Advanced Methods and Applications[M]. New York: Nova Science Publishers, Inc, 2017.
    [3] LIN M T, SCIAMMARELLA C, ESPINOSA H D, et al. . Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3[M]. Cham: Society for Experimental Mechanics, Inc, 2020.
    [4] 胡悦, 王永红, 鲍思源, 等. 高温下数字图像相关散斑最优成像探究[J]. 中国光学,2018,11(5):728-735. doi: 10.3788/co.20181105.0728

    HU Y, WANG Y H, BAO S Y, et al. Optimal imaging of digital image correlation speckle under high temperature[J]. Chinese Optics, 2018, 11(5): 728-735. (in Chinese) doi: 10.3788/co.20181105.0728
    [5] 胡慧然, 但西佐, 赵琪涵, 等. 数字图像相关中的散斑区域自动提取研究[J]. 中国光学,2019,12(6):1329-1337. doi: 10.3788/co.20191206.1329

    HU H R, DAN X Z, ZHAO Q H, et al. Automatic extraction of speckle area in digital image correlation[J]. Chinese Optics, 2019, 12(6): 1329-1337. (in Chinese) doi: 10.3788/co.20191206.1329
    [6] 张贵阳, 霍炬, 杨明, 等. 多相机网络联合约束优化的高精度三维变形全场测量[J]. 光学 精密工程,2021,29(7):1653-1666. doi: 10.37188/OPE.20212907.1653

    ZHANG G Y, HUO J, YANG M, et al. High-precision and full-field measurement of 3D deformation based on multi-camera network joint constraint optimization[J]. Optics and Precision Engineering, 2021, 29(7): 1653-1666. (in Chinese) doi: 10.37188/OPE.20212907.1653
    [7] 王立忠, 赵建博, 谈杰, 等. 高强钢薄板高温焊接变形的视觉测量[J]. 光学 精密工程,2020,28(2):283-295.

    WANG L ZH, ZHAO J B, TAN J, et al. Visual measurement of high-temperature welding deformation for high-strength steel sheet[J]. Optics and Precision Engineering, 2020, 28(2): 283-295. (in Chinese)
    [8] 陈小琦, 张可, 聂广超, 等. 基于切削原位成像法的45钢塑性本构参数辨识[J]. 航空制造技术,2021,64(13):90-95.

    CHEN X Q, ZHANG K, NIE G CH, et al. Identification of plastic constitutive parameters of 45 steel based on in-situ imaging of cutting process[J]. Aeronautical Manufacturing Technology, 2021, 64(13): 90-95. (in Chinese)
    [9] 张东. 基于切削原位成像的加工应力应变场预报研究[D]. 武汉: 华中科技大学, 2019.

    ZHANG D. In situ imaging of cutting process and prediction of strain/stress fields[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [10] HARZALLAH M, POTTIER T, GILBLAS R, et al. A coupled in-situ measurement of temperature and kinematic fields in Ti-6Al-4V serrated chip formation at micro-scale[J]. International Journal of Machine Tools and Manufacture, 2018, 130-131: 20-35. doi: 10.1016/j.ijmachtools.2018.03.003
    [11] 郭振民. 多晶体金属微切削动态过程在位分析[D]. 长春: 长春理工大学, 2021.

    GUO ZH M. In situ analysis of dynamic process of polycrystalline metal micro cutting[D]. Changchun: Changchun University of Science and Technology, 2021. (in Chinese)
    [12] YANG J, BHATTACHARYA K. Augmented Lagrangian digital image correlation[J]. Experimental Mechanics, 2019, 59(2): 187-205. doi: 10.1007/s11340-018-00457-0
    [13] 周栋. 晶圆定位视觉检测系统设计[D]. 沈阳: 沈阳工业大学, 2019.

    ZHOU D. Design of wafer positioning visual inspection system[D]. Shenyang: Shenyang University of Technology, 2019. (in Chinese)
    [14] 吕福超. 基于傅里叶变换轮廓术的地表沉降监测技术研究[D]. 西安: 西安科技大学, 2017.

    LV F CH. Research on monitoring technology of ground settlement based on Fourier transform profilometry[D]. Xi’an: Xi’an University of Science and Technology, 2017. (in Chinese)
  • 加载中
图(19)
计量
  • 文章访问数:  757
  • HTML全文浏览量:  330
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-27
  • 修回日期:  2022-01-13
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-05-20

目录

    /

    返回文章
    返回