留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

激光诱导击穿光谱法测定稀土矿区土壤中钐含量

刘小亮 孙少华 孟祥厅 李小燕 刘云海

刘小亮, 孙少华, 孟祥厅, 李小燕, 刘云海. 激光诱导击穿光谱法测定稀土矿区土壤中钐含量[J]. 中国光学(中英文), 2022, 15(4): 712-721. doi: 10.37188/CO.2022-0042
引用本文: 刘小亮, 孙少华, 孟祥厅, 李小燕, 刘云海. 激光诱导击穿光谱法测定稀土矿区土壤中钐含量[J]. 中国光学(中英文), 2022, 15(4): 712-721. doi: 10.37188/CO.2022-0042
LIU Xiao-liang, SUN Shao-hua, MENG Xiang-ting, LI Xiao-yan, LIU Yun-hai. Measurement of Sm in rare earth mineral soil using laser-induced breakdown spectroscopy[J]. Chinese Optics, 2022, 15(4): 712-721. doi: 10.37188/CO.2022-0042
Citation: LIU Xiao-liang, SUN Shao-hua, MENG Xiang-ting, LI Xiao-yan, LIU Yun-hai. Measurement of Sm in rare earth mineral soil using laser-induced breakdown spectroscopy[J]. Chinese Optics, 2022, 15(4): 712-721. doi: 10.37188/CO.2022-0042

激光诱导击穿光谱法测定稀土矿区土壤中钐含量

doi: 10.37188/CO.2022-0042
基金项目: 国家自然科学基金青年基金项目(No. 12005037);核技术应用教育部工程研究中心开放基金项目资助(No. HJSJYB2021-16)
详细信息
    作者简介:

    刘小亮(1985—),男,安徽潜山人,博士,讲师,2007年于南华大学核工程与核技术专业获得学士学位,2014年于兰州大学获得理学博士学位,主要从事激光等离子体光谱、激光与物质相互作用、气体高次谐波及放射性核素分析等方面的研究。E-mail:201960177@ecut.edu.cn

    刘云海(1976—),男,广东揭西人,博士,教授,博士生导师,1997年于华东地质学院工业分析专业获得学士学位,2003年于中山大学获得理学硕士学位,2008年于武汉大学获得理学博士学位,主要从事放射性核素吸附分离新材料、放射性核素污染治理、激光光谱学等方面的研究。E-mail:yhliu@ecut.edu.cn

  • 中图分类号: TG146.4+53;O657.38

Measurement of Sm in rare earth mineral soil using laser-induced breakdown spectroscopy

Funds: Supported by National Natural Science Foudation of China (No. 12005037); Open Fund of Engineering Research Center of Nuclear Technology Application, Ministry of Education (No. HJSJYB2021-16)
More Information
  • 摘要:

    为了满足现代分析检测技术发展的新要求,促进激光诱导击穿光谱技术(LIBS)在元素分析中的应用,本文利用LIBS结合定标曲线法对内蒙古白云鄂博稀土矿区土壤中的稀土元素钐(Sm)进行了定量分析,初步检验了LIBS对稀土矿样元素成分的检测能力。首先,以编号为GBW07402a国家标准物质土壤为基底,采用标准加样法制备了Sm2O3含量分别为1%、5%、10%和20%的待分析样品。其次,通过调节激光脉冲能量参数对基底样品进行激发,探究了激光能量参数对谱线强度和信背比的影响,得出最优化的实验条件后,对所有待分析样品进行激发以获取等离子体光谱信息。接着,分别采用多峰Lorentz拟合扣除背底法(MFM)和级联积分保留背底法(CIM)对光谱信息进行处理,构建以谱线积分强度与元素含量为关联量的定标曲线。最后,根据定标曲线进行含量预测,初步评估了LIBS用于稀土矿区土壤样品中Sm元素的检测性能。研究结果表明:受稀土矿区土壤基体效应的影响,Sm元素的谱线出现了强烈的展宽而导致无法进行有效分辨,而钠(Na)、钾(K)、钛(Ti)和铁(Fe)等元素的谱线没有呈现出明显的展宽。通过对比不同含量下的光谱信息,选取410 nm-band和470.44 nm为Sm元素分析谱线用于定量分析。基于积分强度和元素含量构建的定标曲线都有着较好的线性相关度,拟合系数(R2)值大都在0.99以上;相比而言,采用CIM处理光谱信息,可以获取更好的线性相关度,最大值为0.99927。以Sm含量为4.310%的3#样品为未知待测样品,采用留一法构建定标曲线对其含量进行预测分析,结果显示CIM法使得分析线具有极佳的预测性能,两条分析线对3#样品含量的预测相对误差均在1%以内。实验结果说明LIBS能够实现稀土矿区土壤中稀土元素Sm含量的检测分析,满足现代分析技术的新要求,为开发便携式稀土元素检测仪提供了实验依据。

     

  • 图 1  LIBS实验装置示意图

    Figure 1.  Schematic diagram of the LIBS experimental setup

    图 2  LIBS光谱图。(a)5种Sm2O3含量梯度的土壤样品;(b)6#纯Sm2O3样品光谱(c)1#、5#样品在380~407 nm和550~620 nm波长区间的光谱

    Figure 2.  LIBS Spectra of (a) soil samples with five Sm2O3 content gradients and (b) 6# pure Sm2O3 sample, (c) the spectra of 1# and 5# samples in the wavelength ranges of 380−407 nm and 550−620 nm

    图 3  不同激光脉冲能量下的光谱

    Figure 3.  Effect of laser pulse energy on the LIBS spectra

    图 4  (a)谱线积分强度和(b)信背比随脉冲能量的演化

    Figure 4.  (a) Peak area and (b) SBR of the emission lines as a function of pulse energy

    图 5  (a)多峰Lorentz拟合扣除背底法以及(b)级联积分保留背底法获取谱线积分强度

    Figure 5.  (a) Multiple-Lorentz Fitting Method (MFM) with backgroud subtraction and (b) Concatenation-based Integration Method (CIM) with background retention used for calculating the peak area

    图 6  分别基于MFM和CIM构造的定标曲线。(a)Sm II 410 nm-band; (b)Sm II 470.44 nm

    Figure 6.  Univariate calibration curves constructed by using the peak area obtained by MFM and CIM for (a) Sm II 410 nm-band and (b) Sm II 470.44 nm, respectively

    图 7  (a)根据定标曲线得出的3#样品中Sm含量预测值及其(b)相对误差

    Figure 7.  (a) The LIBS-concentration of Sm according to the calibration curve and (b) the relative deviation for sample 3

    表  1  采用留一法构建的定标曲线参数及R2

    Table  1.   The value of R2 and fitting parameters from the calibration curves constructed by leave-one-out method

    410 nm-band470.44 nm
    MFMCIMMFMCIM
    a57.26058.137-20.2861.798
    b10.06728.32328.78540.999
    R20.99050.99890.99620.9976
    下载: 导出CSV
  • [1] 石勇. 我国富有的战略资源—稀土材料研究综述[J]. 机械管理开发,2010,25(1):44-45,47. doi: 10.3969/j.issn.1003-773X.2010.01.023

    SHI Y. Research on the summarization of rare-earth material-full of China strategic resources[J]. Mechanical Management and Development, 2010, 25(1): 44-45,47. (in Chinese) doi: 10.3969/j.issn.1003-773X.2010.01.023
    [2] 张琦, 张乾, 师晓梦, 等. 稀土溴化物固态电解质材料在全固态电池中的应用研究进展[J]. 应用化学,2022,39(4):585-598.

    ZHANG Q, ZAHNG Q, SHI X M, et al. Research progress of rare earth bromides based solid electrolytes for all-solid-state batteries[J]. Chinese Journal of Applied Chemistry, 2022, 39(4): 585-598. (in Chinese)
    [3] 胡家乐, 薛冬峰. 稀土离子特性与稀土功能材料研究进展[J]. 应用化学,2020,37(3):245-255. doi: 10.11944/j.issn.1000-0518.2020.03.190350

    HU J L, XUE D F. Research progress on the characteristics of rare earth ions and rare earth functional materials[J]. Chinese Journal of Applied Chemistry, 2020, 37(3): 245-255. (in Chinese) doi: 10.11944/j.issn.1000-0518.2020.03.190350
    [4] 刘江, 赵颖如, 徐文贵. 放射性核素钐153的应用进展[J]. 国际医学放射学杂志,2014,37(4):366-370. doi: 10.3874/j.issn.1674-1897.2014.04.Z0412

    LIU J, ZHAO Y R, XU W G. Application progress of radionuclide Samarium 153[J]. International Journal of Medical Radiology, 2014, 37(4): 366-370. (in Chinese) doi: 10.3874/j.issn.1674-1897.2014.04.Z0412
    [5] 石向东, 董广成, 张旭明, 等. 利用中子吸收材料进行乏燃料贮存的研究进展[J]. 辽宁工业大学学报(自然科学版),2020,40(6):376-380.

    SHI X D, DONG G CH, ZHANG X M, et al. Research progress on neutron absorber materials of spent fule storage[J]. Journal of Liaoning University of Technology (Natural Science Edition), 2020, 40(6): 376-380. (in Chinese)
    [6] 罗明标, 杨枝, 郭国林, 等. 白云鄂博铁矿石中稀土的赋存状态研究[J]. 中国稀土学报,2007,25(S1):57-61.

    LUO M B, YANG ZH, GUO G L, et al. Research on occurrence state of REE in Bayan obo iron ore[J]. Journal of the Chinese Rare Earth Society, 2007, 25(S1): 57-61. (in Chinese)
    [7] 高娟琴, 于扬, 李以科, 等. 内蒙白云鄂博稀土矿土壤-植物稀土元素及重金属分布特征[J]. 岩矿测试,2021,40(6):871-882.

    GAO J Q, YU Y, LI Y K, et al. Distribution characteristics of rare earth elements and heavy metals in a soil-plant system at Bayan Obo Rare Earth Mine, Inner Mongolia[J]. Rock and Mineral Analysis, 2021, 40(6): 871-882. (in Chinese)
    [8] 王哲, 赵莹晨, 骆逸飞, 等. 内蒙古白云鄂博矿区土壤稀土元素污染特征及评价[J]. 环境科学,2021,42(3):1503-1513.

    WANG ZH, ZHAO Y CH, LUO Y F, et al. Characteristics and evaluation of soil rare earth element pollution in the Bayan Obo mining region of Inner Mongolia[J]. Environmental Science, 2021, 42(3): 1503-1513. (in Chinese)
    [9] PAGANO G, GUIDA M, TOMMASI F, et al. Health effects and toxicity mechanisms of rare earth elements-Knowledge gaps and research prospects[J]. Ecotoxicology and Environmental Safety, 2015, 115: 40-48. doi: 10.1016/j.ecoenv.2015.01.030
    [10] RIM K T, KOO K H, PARK J S. Toxicological evaluations of rare earths and their health impacts to workers: a literature review[J]. Safety and Health at Work, 2013, 4(1): 12-26. doi: 10.5491/SHAW.2013.4.1.12
    [11] VEERASAMY N, SAHOO S K, MURUGAN R, et al. ICP-MS measurement of trace and rare earth elements in beach placer-deposit soils of Odisha, East Coast of India, to estimate natural enhancement of elements in the environment[J]. Molecules, 2021, 26(24): 7510. doi: 10.3390/molecules26247510
    [12] WU W Q, XU T, HAO Q, et al. Applications of X-ray fluorescence analysis of rare earths in China[J]. Journal of Rare Earths, 2010, 28(S1): 30-36.
    [13] MONDAL S, GHAR A, SATPATI A K, et al. Recovery of rare earth elements from coal fly ash using TEHDGA impregnated resin[J]. Hydrometallurgy, 2019, 185: 93-101. doi: 10.1016/j.hydromet.2019.02.005
    [14] 黄尧, 赵南京, 孟德硕, 等. 土壤多组分PAHs激光诱导二维荧光光谱定量方法研究[J]. 中国光学,2020,13(6):1401-1410.

    HUANG Y, ZHAO N J, MENG D SH, et al. Study on quantitative methods of laser-induced two-dimensional fluorescence spectroscopy of multicomponent PAHs in soils[J]. Chinese Optics, 2020, 13(6): 1401-1410. (in Chinese)
    [15] CREMERS D A, RADZIEMSKI L J. Handbook of Laser-Induced Breakdown Spectroscopy[M]. 2nd ed. Hoboken: John Wiley & Sons, Ltd, 2013.
    [16] 李晨毓, 曲亮, 高飞, 等. 激光诱导击穿光谱对金属、陶瓷文物成分的表面及深度分布分析[J]. 中国光学,2020,13(6):1239-1248. doi: 10.37188/CO.2020-0112

    LI CH Y, QU L, GAO F, et al. Composition analysis of the surface and depth distribution of metal and ceramic cultural relics by laser-induced breakdown spectroscopy[J]. Chinese Optics, 2020, 13(6): 1239-1248. (in Chinese) doi: 10.37188/CO.2020-0112
    [17] 侯冠宇, 王平, 佟存柱. 激光诱导击穿光谱技术及应用研究进展[J]. 中国光学,2013,6(4):490-500.

    HOU G Y, WANG P, TONG C ZH. Progress in laser-induced breakdown spectroscopy and its applications[J]. Chinese Optics, 2013, 6(4): 490-500. (in Chinese)
    [18] GUDMUNDSSON S H, MATTHIASSON J, LEOSSON K. Accurate Real-Time Elemental (LIBS) analysis of molten aluminum and aluminum alloys[M]//TOMSETT A. Light Metals 2020. Cham: Springer, 2020: 860-864.
    [19] SEZER B, BILGE G, BOYACI I H. Capabilities and limitations of LIBS in food analysis[J]. TrAC Trends in Analytical Chemistry, 2017, 97: 345-353. doi: 10.1016/j.trac.2017.10.003
    [20] KAUTZ E J, DEVARAJ A, SENOR D J, et al. Hydrogen isotopic analysis of nuclear reactor materials using ultrafast laser-induced breakdown spectroscopy[J]. Optics Express, 2021, 29(4): 4936-4946. doi: 10.1364/OE.412351
    [21] TAVARES T R, MOUAZEN A M, NUNES L C, et al. Laser-Induced Breakdown Spectroscopy (LIBS) for tropical soil fertility analysis[J]. Soil and Tillage Research, 2022, 216: 105250. doi: 10.1016/j.still.2021.105250
    [22] MARTIN M, MARTIN R C, ALLMAN S, et al. Quantification of rare earth elements using laser-induced breakdown spectroscopy[J]. Spectrochimica Acta Part B:Atomic Spectroscopy, 2015, 114: 65-73. doi: 10.1016/j.sab.2015.10.005
    [23] RETHFELDT N, BRINKMANN P, RIEBE D, et al. Detection of rare earth elements in minerals and soils by laser-induced breakdown spectroscopy (LIBS) using interval PLS[J]. Minerals, 2021, 11(12): 1379. doi: 10.3390/min11121379
    [24] NIST atomic spectra database lines[EB/OL]. https://physics.nist.gov/PhysRefData/ASD/lines_form.html.
    [25] CHINNI R C, CREMERS D A, RADZIEMSKI L J, et al. Detection of uranium using laser-induced breakdown spectroscopy[J]. Applied Spectroscopy, 2009, 63(11): 1238-1250. doi: 10.1366/000370209789806867
    [26] RUSSO R E, MAO X L, LIU H C, et al. Time-resolved plasma diagnostics and mass removal during single-pulse laser ablation[J]. Applied Physics A, 1999, 69(S1): S887-S894.
    [27] YI R X, GUO L B, ZOU X H, et al. Background removal in soil analysis using laser-induced breakdown spectroscopy combined with standard addition method[J]. Optics Express, 2016, 24(3): 2607-2618. doi: 10.1364/OE.24.002607
    [28] DEVANGAD P, UNNIKRISHNAN V K, NAYAK R, et al. Performance evaluation of Laser Induced Breakdown Spectroscopy (LIBS) for quantitative analysis of rare earth elements in phosphate glasses[J]. Optical Materials, 2016, 52: 32-37. doi: 10.1016/j.optmat.2015.12.001
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  109
  • HTML全文浏览量:  60
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-04-06
  • 网络出版日期:  2022-06-15

目录

    /

    返回文章
    返回