留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全景内窥成像技术及应用

霍嘉燚 李冕豪 王子川 袁波 杨青 王立强

霍嘉燚, 李冕豪, 王子川, 袁波, 杨青, 王立强. 全景内窥成像技术及应用[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0074
引用本文: 霍嘉燚, 李冕豪, 王子川, 袁波, 杨青, 王立强. 全景内窥成像技术及应用[J]. 中国光学(中英文). doi: 10.37188/CO.2022-0074
HUO Jia-yi, LI Mian-hao, WANG Zi-chuan, YUAN Bo, YANG Qing, WANG Li-qiang. Panoramic Endoscopic Imaging Technology and Application[J]. Chinese Optics. doi: 10.37188/CO.2022-0074
Citation: HUO Jia-yi, LI Mian-hao, WANG Zi-chuan, YUAN Bo, YANG Qing, WANG Li-qiang. Panoramic Endoscopic Imaging Technology and Application[J]. Chinese Optics. doi: 10.37188/CO.2022-0074

全景内窥成像技术及应用

doi: 10.37188/CO.2022-0074
基金项目: 国家重点研发计划项目(No. 2021YFC2400103);浙江省基础公益研究计划项目(No. LGF20F50006);之江实验室科研项目(No. 2019MC0AD02, 2022MG0AL01)
详细信息
    作者简介:

    霍嘉燚(1997—),男,河北保定人,博士在读,2019年6月于天津大学获得学士学位,2019年9月进入浙江大学光电学院学习。主要从事内窥镜成像、三维成像等方面研究。Email:jiayi_huo@zju.edu.cn

    王立强(1977—),男,陕西渭南人,副教授,博士生导师,1998年于浙江大学获得学士学位,2001年于浙江大学获得硕士学位,2004年于浙江大学获得博士学位,现为浙江大学光电信息检测技术研究所副所长,主要从事光电成像技术及内窥镜方面的研究。E-mail:wangliqiang@zju.edu.cnmailto:

  • 中图分类号: TP394.1;

Panoramic Endoscopic Imaging Technology and Application

Funds: Supported by the National Key Research and Development Program of China (No. 2021YFC2400103); the Zhejiang ProvincialNatural Science Foundation of China (No. LGF20F050006); Key Research Projectof Zhejiang Lab (No. 2019MC0AD02, No. 2022MG0AL01)
More Information
  • 摘要:

    全景内窥成像技术可有效减小体内器官的观察盲区,具有缩短手术时间、降低术中出血风险、改善手术预后、缩短术后恢复时间等多种优点,在微创手术和术前检查中有重要应用价值,是近年来的研究热点。本文从原理和产品应用两个方面对全景内窥成像技术进行了梳理。首先,综述了基于二维和三维成像的各种全景内窥成像技术,阐述了它们各自的实现方式,并分析了其指标和性能。其次,对比分析了由全景内窥成像技术衍生出来的胶囊内窥镜、全景结直肠镜等多种不同类型的产品,并展望了全景内窥成像技术的发展趋势和应用前景。

     

  • 图 1  套针相机组件[26]

    Figure 1.  Trocar-Camera Assembly

    图 2  双摄像头胶囊内窥镜[28]

    Figure 2.  Dual-view capsule endoscope

    图 3  内窥镜镜体的CAD模型[31]

    Figure 3.  CAD model of the endoscope system

    图 4  实验验证的图像 a)左侧相机图像b)内窥镜图像 c)右侧相机图像[31]

    Figure 4.  Image for experiment validation. a) left camera image. b) endoscope image. c) right camera image.

    图 5  紧凑双视角内窥镜设计方案[33]

    Figure 5.  Design of compact dual-view endoscope

    图 6  自由曲面棱镜的设计[33]

    Figure 6.  Design of freeform surface lens

    图 7  全景环形透镜的原理

    Figure 7.  Principle of panoramic annular lens

    图 8  基于全景环形透镜和自由曲面棱镜内窥镜系统[34]

    Figure 8.  Endoscope System based on PAL and freeform surface lens

    图 9  凹凸型广角内窥镜设计[36]

    Figure 9.  Design of foveated wide angle endoscope lens

    图 10  基于抛物面镜内窥镜设计图[37]

    Figure 10.  Design of endoscope based on convex parabolic mirrors

    图 11  基于复合透镜的仿生内窥镜原型[39]

    Figure 11.  Prototypeof bionic endoscope based on compound lens

    图 12  紧凑双视场内窥镜的设计[41]

    Figure 12.  Design of compact dual-view endoscope

    图 13  不同结构光编码方式示意图。(a)相位模式结构光[47];(b)灰度编码条纹结构光[46];(c)伪随机颜色编码结构光[53]

    Figure 13.  Schematic diagram of structured light in differentcoding mode. (a) Phase mode structured light; (b) Gray codes strip-structured light; (c) Pseudo-random color codes-structured light

    图 14  真实内窥镜图像视差图:(a)输入图像(左);(b)SGBM视差图;(c)StereoNet视差图[59]

    Figure 14.  Disparity results of real endoscopic images: (a) input image (left); (b) disparity map produced by theSGBM algorithm; (c) disparity map produced by StereoNet

    图 15  重建三维点云图[60]

    Figure 15.  Reconstruction3D point cloud

    图 16  实验场景&全景三维点云图[66]。(a)实验场景;(b)ElasticFusion重建全景三维点云;(c)ORB-SLAM3重建全景三维点云

    Figure 16.  Experiment scene&full-view 3D point cloud. (a) Experiment scene; (b) Reconstructed by ElasticFusion; (c) Reconstructed by ORB-SLAM3

    图 17  单目内窥镜SLAM框架[70]

    Figure 17.  Framework for monocular SLAM-endoscopy

    图 18  SfM重建三维点云图[71]

    Figure 18.  3D point cloud reconstructed by SfM

    图 20  a)CapsoCam SV1示意图 b)拍摄的图像

    Figure 20.  a) CapsoCam SV1 Capsule Endoscope b) Image captured by SV1

    图 19  全景胶囊内镜下CD的粘膜萎缩内镜特征[8]

    Figure 19.  Typical signs of mucosal atrophy detected by panoramic capsule endoscope

    图 22  传统结肠镜和FUSE拍摄的图像[73]

    Figure 22.  Images captured by traditional colonoscopy and FUSE

    图 21  a)FUSE结肠镜 b)FUSE拍摄的图像

    Figure 21.  a) FUSE Colonoscope b) Image captured by FUSE

    表  1  不同全景镜头技术对比

    Table  1.   Comparison of different panoramic lens technology

    成像方式对应文献视场结构复杂度成本畸变特点
    自由曲面棱镜[33]多视角成像,
    视场不连续
    全景环形透镜[34]宽视场、高分辨
    折反射成
    像系统
    [35-37]加工难度低
    仿生光学系统[39-40]分辨率高、
    成像均匀
    多系统组合[41]边缘视场成
    像质量高
    下载: 导出CSV

    表  2  商用胶囊内镜

    Table  2.   Commercial Capsule Endoscope

    产品厂家国家帧率摄像头
    数量
    视场角
    PillCam SB3Medtronic美国2-61156°
    PillCam Crohn’s
    Capsule
    Medtronic美国4-352336°
    EndoCapsule 10Olympus日本21160°
    MiroCam MC1600IntroMedic韩国61170°
    MiroCam MC2000IntroMedic韩国3(per
    camera)
    2340°
    OMOM RC100Jinshan中国2-81160°
    CapsoCam PlusCapso
    Visison
    美国12-204360°
    下载: 导出CSV

    表  3  商用结肠内镜

    Table  3.   Commercial Colonoscopy

    产品厂家国家视场角摄像头
    个数
    实现方式
    CF-HQ290Olympus日本170°1超广角
    FUSEEndo Choice美国330°3多视角显示
    EWAVEOlympus日本232°3多摄像头拼接
    Third Eye
    Panoromic
    Avantis美国>300°3多视角显示
    下载: 导出CSV
  • [1] 熊兴波, 樊淑梅, 江镇州, 等. 胶囊内镜在胃肠道疾病中的诊断价值研究[J]. 中国实用医药,2021,16(19):85-87. doi: 10.14163/j.cnki.11-5547/r.2021.19.030

    XIONG X B, FAN SH M, JIANG ZH ZH, et al. Research on the diagnostic value of capsule endoscopy in gastrointestinal diseases[J]. China Practical Medicine, 2021, 16(19): 85-87. (in Chinese) doi: 10.14163/j.cnki.11-5547/r.2021.19.030
    [2] 国擎. 腹腔镜辅助与开腹直肠癌根治术治疗直肠癌的近期效果对比[J]. 中国实用医药,2022,17(3):30-32. doi: 10.14163/j.cnki.11-5547/r.2022.03.010

    GUO Q. Comparison of the recent effect of laparoscopic-assisted resection and open radical resection of rectal cancer in the treatment of rectal cancer[J]. China Practical Medicine, 2022, 17(3): 30-32. (in Chinese) doi: 10.14163/j.cnki.11-5547/r.2022.03.010
    [3] 高志强. 内镜联合腹腔镜在胃肠道病变手术治疗中的临床应用[J]. 影像研究与医学应用,2022,6(1):188-190. doi: 10.3969/j.issn.2096-3807.2022.01.064

    GAO ZH Q. Clinical application of endoscopy combined with laparoscopy in the surgical treatment of gastrointestinal lesions[J]. Journal of Imaging Research and Medical Applications, 2022, 6(1): 188-190. (in Chinese) doi: 10.3969/j.issn.2096-3807.2022.01.064
    [4] VAN KEULEN K E, SOONS E, SIERSEMA P D. The role of behind folds visualizing techniques and technologies in improving adenoma detection rate[J]. Current Treatment Options in Gastroenterology, 2019, 17(3): 394-407. doi: 10.1007/s11938-019-00242-5
    [5] FRIEDRICH K, GEHRKE S, STREMMEL W, et al. First clinical trial of a newly developed capsule endoscope with panoramic side view for small bowel: a pilot study[J]. Journal of Gastroenterology and Hepatology, 2013, 28(9): 1496-1501. doi: 10.1111/jgh.12280
    [6] ZAMMIT S C, MCALINDON M E, SIDHU R. PTU-084 the use of panoramic capsule endoscopy in obscure gastrointestinal bleeding[J]. Gut, 2019, 68(S2): A233.
    [7] ZWINGER L L, SIEGMUND B, STROUX A, et al. CapsoCam SV-1 versus PillCam SB 3 in the detection of obscure gastrointestinal bleeding: results of a prospective randomized comparative multicenter study[J]. Journal of Clinical Gastroenterology, 2019, 53(3): e101-e106. doi: 10.1097/MCG.0000000000000994
    [8] BRANCHI F, FERRETTI F, ORLANDO S, et al. Small-bowel capsule endoscopy in patients with celiac disease, axial versus lateral/panoramic view: Results from a prospective randomized trial[J]. Digestive Endoscopy, 2020, 32(5): 778-784. doi: 10.1111/den.13575
    [9] NAYA Y, NAKAMURA K, ARAKI K, et al. Usefulness of panoramic views for novice surgeons doing retroperitoneal laparoscopic nephrectomy[J]. International Journal of Urology, 2009, 16(2): 177-180. doi: 10.1111/j.1442-2042.2008.02215.x
    [10] ELOSUA A, RULLAN M, RUBIO S, et al. Does capsule endoscopy impact clinical management in established Crohn's disease?[J]. Digestive and Liver Disease, 2022, 54(1): 118-124. doi: 10.1016/j.dld.2021.08.014
    [11] POPOVIC V, SEYID K, COGAL Ö, et al. . State-of-the-art multi-camera systems[M]//POPOVIC V, SEYID K, COGAL Ö, et al. . Design and Implementation of Real-Time Multi-Sensor Vision Systems. Cham: Springer, 2017: 13-31.
    [12] ZENG J L, CHENG Y H, WU T Y, et al. . MicroEYE: a wireless multiple-lenses panoramic endoscopic system[C]. International Conference on Advanced Engineering Theory and Applications, Springer, 2017: 190-200.
    [13] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110. doi: 10.1023/B:VISI.0000029664.99615.94
    [14] ROSTEN E, DRUMMOND T. Machine learning for high-speed corner detection[C]. 9th European Conference on Computer Vision, Springer, 2006: 430-443.
    [15] BAY H, TUYTELAARS T, VAN GOOL L. Surf: Speeded up robust features[C]. 9th European Conference on Computer Vision, Springer, 2006: 404-417.
    [16] RUBLEE E, RABAUD V, KONOLIGE K, et al. . ORB: An efficient alternative to SIFT or SURF[C]. International Conference on Computer Vision, Barcelona, 2011: 2564-2571.
    [17] MUJA M, LOWE D G. Fast approximate nearest neighbors with automatic algorithm configuration[C]. Proceedings of the Fourth International Conference on Computer Vision Theory and Applications, INSTICC Press, 2009.
    [18] FISCHLER M A, BOLLES R C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[J]. Communications of the ACM, 1981, 24(6): 381-395. doi: 10.1145/358669.358692
    [19] PENG C H, CHENG C H. A panoramic endoscope design and implementation for Minimally Invasive Surgery[C]. 2014 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2014: 453-456.
    [20] CHENG C H, PENG C H, GUO J I, et al. A two-lens minimally invasive surgical panoramic endoscope design and implementation[J]. International Journal of Electrical Engineering, 2014, 21(6): 235-241.
    [21] CHENG C H, HUNG SH P, GUO J I, et al. . A wireless panoramic endoscope system design and implementation for minimally invasive surgery[C]. 2015 IEEE International Symposium on Circuits and Systems (ISCAS), IEEE, 2015: 1895-1895.
    [22] KIM D T, CHENG C H. A panoramic stitching vision performance improvement technique for Minimally Invasive Surgery[C]. 2016 5th International Symposium on Next-Generation Electronics (ISNE), IEEE, 2016: 1-2.
    [23] KIM D T, NGUYEN V T, CHENG C H, et al. Speed improvement in image stitching for panoramic dynamic images during minimally invasive surgery[J]. Journal of Healthcare Engineering, 2018, 2018: 3654210.
    [24] KIM D T, CHENG C H, LIU D G, et al. Designing a new endoscope for panoramic-view with focus-area 3D-vision in minimally invasive surgery[J]. Journal of Medical and Biological Engineering, 2020, 40(2): 204-219. doi: 10.1007/s40846-019-00503-9
    [25] KIM D T, CHENG C H, LIU D G, et al. Performance improvement for two-lens panoramic endoscopic system during minimally invasive surgery[J]. Journal of Healthcare Engineering, 2019, 2019: 2097284.
    [26] KIM J J, WATRAS A, LIU H W, et al. Large-field-of-view visualization utilizing multiple miniaturized cameras for laparoscopic surgery[J]. Micromachines, 2018, 9(9): 431. doi: 10.3390/mi9090431
    [27] ZHANG Z Y, WANG L X, ZHENG W F, et al. Endoscope image mosaic based on pyramid ORB[J]. Biomedical Signal Processing and Control, 2022, 71: 103261. doi: 10.1016/j.bspc.2021.103261
    [28] SHEU M J, CHIANG C W, SUN W S, et al. Dual view capsule endoscopic lens design[J]. Optics Express, 2015, 23(7): 8565-8575. doi: 10.1364/OE.23.008565
    [29] JANG J, LEE J, LEE K R, et al. . 4-Camera VGA-resolution capsule endoscope with 80Mb/s body-channel communication transceiver and Sub-cm range capsule localization[C]. 2018 IEEE International Solid - State Circuits Conference - (ISSCC), IEEE, 2018: 282-284.
    [30] JANG J, YOO H J. A capsule endoscope system for wide visualization field and location tracking[C]. 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS), IEEE, 2018: 1-4.
    [31] TAMADAZTE B, AGUSTINOS A, CINQUIN P, et al. Multi-view vision system for laparoscopy surgery[J]. International Journal of Computer Assisted Radiology and Surgery, 2015, 10(2): 195-203. doi: 10.1007/s11548-014-1064-2
    [32] LIN CH H, HSIAO L J, HSAIO J T, et al. Front view and panoramic side view videoscope lens system design[J]. Applied Optics, 2014, 53(29): H146-H152. doi: 10.1364/AO.53.00H146
    [33] KATKAM R, BANERJEE B, HUANG C Y, et al. Compact dual-view endoscope without field obscuration[J]. Journal of Biomedical Optics, 2015, 20(7): 076007. doi: 10.1117/1.JBO.20.7.076007
    [34] LIU Q, BAI J, LUO Y J. Design of high resolution panoramic endoscope imaging system based on freeform surface[J]. Journal of Physics:Conference Series, 2016, 680: 012011. doi: 10.1088/1742-6596/680/1/012011
    [35] SAHLI S, WANG R C C, MURTHY A, et al. A 360 degree side view endoscope for lower GI tract mapping[J]. Physics in Canada, 2015, 71: 18-20.
    [36] DALLAIRE X, THIBAULT S. Design of a foveated wide-angle endoscopic lens[J]. Optical Engineering, 2016, 55(4): 047106. doi: 10.1117/1.OE.55.4.047106
    [37] TSENG S M, HUANG C W, HSU Y T, et al. . Panoramic annular lens design of endoscope[C]. 2017 IEEE International Conference on Consumer Electronics-Taiwan (ICCE-TW), IEEE, 2017: 101-102.
    [38] TSENG S M, YU J C, HSU Y T, et al. Panoramic endoscope based on convex parabolic mirrors[J]. Optical Engineering, 2018, 57(3): 033102.
    [39] TSENG Y C, HAN P, HSU H C, et al. A flexible FOV capsule endoscope design based on compound lens[J]. Journal of Display Technology, 2016, 12(12): 1798-1804.
    [40] COGAL O, LEBLEBICI Y. An insect eye inspired miniaturized multi-camera system for endoscopic imaging[J]. IEEE Transactions on Biomedical Circuits and Systems, 2017, 11(1): 212-224. doi: 10.1109/TBCAS.2016.2547388
    [41] CHEN L, YUAN Q, YE J F, et al. Design of a compact dual-view endoscope based on a hybrid lens with annularly stitched aspheres[J]. Optics Communications, 2019, 453: 124346. doi: 10.1016/j.optcom.2019.124346
    [42] PENNE J, HÖLLER K, STÜRMER M, et al. . Time-of-flight 3-D endoscopy[C]. 12th International Conference on Medical Image Computing and Computer-Assisted Intervention, Springer, 2009: 467-474.
    [43] KÖHLER T, HAASE S, BAUER S, et al. . ToF meets RGB: novel multi-sensor super-resolution for hybrid 3-D endoscopy[C]. 16th International Conference on Medical Image Computing and Computer-Assisted Intervention, 2013: 139-146.
    [44] STOLYAROV R, BUHARIN V, VAL M, et al. Sub-millimeter precision 3D measurement through a standard endoscope with time of flight[J]. Proceedings of SPIE, 2022, 11949: 119490E.
    [45] ISHII I, YAMAMOTO K,DOI K, et al.. High-speed 3D image acquisition using coded structured light projection[C]. 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, IEEE, 2007: 925-930.
    [46] 朱高杰. 基于相位结构光的三维测量内窥镜系统研究[D]. 杭州: 浙江大学, 2018.

    ZHU G J. Research on three-dimensional measurement endoscope system based on phase-shifting structure light[D]. Hangzhou: Zhejiang University, 2018. (in Chinese)
    [47] HUANG P S, ZHANG S. Fast three-step phase-shifting algorithm[J]. Applied Optics, 2006, 45(21): 5086-5091. doi: 10.1364/AO.45.005086
    [48] VALKENBURG R J, MCIVOR A M. Accurate 3D measurement using a structured light system[J]. Image and Vision Computing, 1998, 16(2): 99-110. doi: 10.1016/S0262-8856(97)00053-X
    [49] POSDAMER J L, ALTSCHULER M D. Surface measurement by space-encoded projected beam systems[J]. Computer Graphics and Image Processing, 1982, 18(1): 1-17. doi: 10.1016/0146-664X(82)90096-X
    [50] HEIKE C L, UPSON K, STUHAUG E, et al. 3D digital stereophotogrammetry: a practical guide to facial image acquisition[J]. Head &Face Medicine, 2010, 6(1): 18.
    [51] MAURICE X, ALBITAR C, DOIGNON C, et al. . A structured light-based laparoscope with real-time organs' surface reconstruction for minimally invasive surgery[C]. 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2012: 5769-5772.
    [52] GRIFFIN P M, NARASIMHAN L S, YEE S R. Generation of uniquely encoded light patterns for range data acquisition[J]. Pattern Recognition, 1992, 25(6): 609-616. doi: 10.1016/0031-3203(92)90078-W
    [53] DESJARDINS D, PAYEUR P. Dense stereo range sensing with marching pseudo-random patterns[C]. Fourth Canadian Conference on Computer and Robot Vision (CRV'07), IEEE, 2007: 216-226.
    [54] GORTHI S S, RASTOGI P. Fringe projection techniques: whither we are?[J]. Optics and Lasers in Engineering, 2010, 48: 133-140. doi: 10.1016/j.optlaseng.2009.09.001
    [55] CLANCY N T, STOYANOV D, MAIER-HEIN L, et al. Spectrally encoded fiber-based structured lighting probe for intraoperative 3D imaging[J]. Biomedical Optics Express, 2011, 2(11): 3119-3128. doi: 10.1364/BOE.2.003119
    [56] STOYANOV D, YANG G ZH. Soft tissue deformation tracking for robotic assisted minimally invasive surgery[C]. 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, IEEE, 2009: 254-257.
    [57] HIRSCHMULLER H. Stereo processing by semiglobal matching and mutual information[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 30(2): 328-341.
    [58] KHAMIS S, FANELLO S, RHEMANN C, et al. . Stereonet: Guided hierarchical refinement for real-time edge-aware depth prediction[C]. 15th Proceedings of the European Conference on Computer Vision (ECCV), Springer, 2018: 573-590.
    [59] YU H, ZHOU CH J, ZHANG W, et al. A three-dimensional measurement method for binocular endoscopes based on deep learning[J]. Frontiers of Information Technology &Electronic Engineering, 2022, 23(4): 653-660.
    [60] ZHOU CH J, YU H, YUAN B, et al. Three-dimensional stitching of binocular endoscopic images based on feature points[J]. Photonics, 2021, 8(8): 330. doi: 10.3390/photonics8080330
    [61] MUR-ARTAL R, MONTIEL J M M, TARDÓS J D. ORB-SLAM: a versatile and accurate monocular SLAM system[J]. IEEE Transactions on Robotics, 2015, 31(5): 1147-1163. doi: 10.1109/TRO.2015.2463671
    [62] MUR-ARTAL R, TARDÓS J D. ORB-SLAM: tracking and mapping recognizable features[C]. Workshop on Multi View Geometry in Robotics (MVIGRO), 2014: 2. (查阅所有网上资料, 未找到出版者, 请联系作者确认)
    [63] MUR-ARTAL R, TARDÓS J D. Orb-slam2: An open-source slam system for monocular, stereo, and rgb-d cameras[J]. IEEE Transactions on Robotics, 2017, 33(5): 1255-1262. doi: 10.1109/TRO.2017.2705103
    [64] CAMPOS C, ELVIRA R, RODRÍGUEZ J J G, et al. Orb-slam3: An accurate open-source library for visual, visual–inertial, and multimap slam[J]. IEEE Transactions on Robotics, 2021, 37(6): 1874-1890. doi: 10.1109/TRO.2021.3075644
    [65] WHELAN T, LEUTENEGGER S, SALAS-MORENO R, et al. . ElasticFusion: Dense SLAM without a pose graph[C]. Robotics: Science and Systems XI, 2015. (查阅所有网上资料, 未找到出版社, 请联系作者确认)
    [66] DOCEA R, PFEIFFER M, BODENSTEDT S, et al. Simultaneous localisation and mapping for laparoscopic liver navigation: a comparative evaluation study[J]. Proceedings of SPIE, 2021, 11598: 115980B.
    [67] CHEN L, TANG W, JOHN N W, et al. SLAM-based dense surface reconstruction in monocular minimally invasive surgery and its application to augmented reality[J]. Computer Methods and Programs in Biomedicine, 2018, 158: 135-146. doi: 10.1016/j.cmpb.2018.02.006
    [68] NEWCOMBE R A, LOVEGROVE S J, DAVISON A J. DTAM: Dense tracking and mapping in real-time[C]. 2011 International Conference on Computer Vision, IEEE, 2011: 2320-2327.
    [69] ENGEL J, STURM J, CREMERS D. Semi-dense visual odometry for a monocular camera[C]. Proceedings of the IEEE International Conference on Computer Vision, IEEE, 2013: 1449-1456.
    [70] CHEN R J, BOBROW T L, ATHEY T, et al. . Slam endoscopy enhanced by adversarial depth prediction[Z]. arXiv preprint arXiv: 1907.00283, 2019.
    [71] WIDYA A R, MONNO Y, OKUTOMI M, et al. Whole stomach 3D reconstruction and frame localization from monocular endoscope video[J]. IEEE Journal of Translational Engineering in Health and Medicine, 2019, 7: 1-10.
    [72] TONTINI G E, CAVALLARO F, NEUMANN H, et al. . Extensive small-bowel Crohn’s disease detected by the newly introduced 360° panoramic viewing capsule endoscopy system[J]. Endoscopy, 2014, 46(S 01): E353-E354.
    [73] VOGELSTEIN B, FEARON E R, HAMILTON S R, et al. Genetic alterations during colorectal-tumor development[J]. New England Journal of Medicine, 1988, 319(9): 525-532. doi: 10.1056/NEJM198809013190901
    [74] LEGGETT B, WHITEHALL V. Role of the serrated pathway in colorectal cancer pathogenesis[J]. Gastroenterology, 2010, 138(6): 2088-2100. doi: 10.1053/j.gastro.2009.12.066
    [75] GRALNEK I M, CARR-LOCKE D L, SEGOL O, et al. Comparison of standard forward-viewing mode versus ultrawide-viewing mode of a novel colonoscopy platform: a prospective, multicenter study in the detection of simulated polyps in an in vitro colon model (with video)[J]. Gastrointestinal Endoscopy, 2013, 77(3): 472-479. doi: 10.1016/j.gie.2012.12.011
    [76] RUBIN M, BOSE K P, KIM S H. Mo1517 successful deployment and use of third eye panoramic™ a novel side viewing video CAP fitted on a standard colonoscope[J]. Gastrointestinal Endoscopy, 2014, 79(S5): AB466.
  • 加载中
图(22) / 表(3)
计量
  • 文章访问数:  74
  • HTML全文浏览量:  42
  • PDF下载量:  103
  • 被引次数: 0
出版历程
  • 网络出版日期:  2022-07-06

目录

    /

    返回文章
    返回