留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于光机热集成分析的大规模拼接焦面误差分配

牛盛光 郭亮 陆振玉 韩康

牛盛光, 郭亮, 陆振玉, 韩康. 基于光机热集成分析的大规模拼接焦面误差分配[J]. 中国光学(中英文), 2022, 15(5): 1000-1006. doi: 10.37188/CO.2022-0094
引用本文: 牛盛光, 郭亮, 陆振玉, 韩康. 基于光机热集成分析的大规模拼接焦面误差分配[J]. 中国光学(中英文), 2022, 15(5): 1000-1006. doi: 10.37188/CO.2022-0094
NIU Sheng-guang, GUO Liang, LU Zhen-yu, HAN Kang. Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis[J]. Chinese Optics, 2022, 15(5): 1000-1006. doi: 10.37188/CO.2022-0094
Citation: NIU Sheng-guang, GUO Liang, LU Zhen-yu, HAN Kang. Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis[J]. Chinese Optics, 2022, 15(5): 1000-1006. doi: 10.37188/CO.2022-0094

基于光机热集成分析的大规模拼接焦面误差分配

doi: 10.37188/CO.2022-0094
基金项目: 国家自然科学基金资助项目(No. 61605203);中国科学院青年创新促进会资助项目(No. 2015173)
详细信息
    作者简介:

    牛盛光(1997—),男,山东青岛人,硕士研究生,2020年于青岛理工大学获得工学学士学位,主要从事大规模焦平面拼接的研究。E-mail:961568790@qq.com

    郭 亮(1982—),男,黑龙江哈尔滨人,博士,研究员,博士生导师,2004年、2006年于哈尔滨工业大学分别获得学士、硕士学位,2013年于中国科学院大学获得博士学位,主要从事传热传质学研究、航空/航天光学遥感器热控制技术研究、光电材料与器件技术研究。E-mail:guoliang@ciomp.ac.cn

  • 中图分类号: TH74

Large-scale splicing focal plane error distribution based on optical-structural-thermal integration analysis

Funds: Supported by National Natural  Science Foundation of China (No. 61605203); Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2015173)
More Information
  • 摘要:

    随着空间天文、态势感知、环境监测等领域的要求越来越高,空间望远镜正在向着大视场、大口径的方向发展。大规模焦面拼接技术是大视场空间望远镜的关键技术,其主焦面平面度误差(P-V值)分配方法一般都是基于经验的直接赋值法,容易出现误差分配不合理的问题。本文提出一种拼接焦面误差分配方法,通过光机热集成分析对重要参数误差进行精确分配。以16片互补金属氧化物半导体 (CMOS)图像传感器4×4机械直接拼接焦面为例,建立了拼接焦面误差树,通过光机热集成分析方法分析了重力和温度等重要参数对拼接焦面平面度的影响,最终给出误差分配结果。分析结果表明:两种不同姿态下重力造成的平面度误差分别为0.28 μm、1.55 μm,温度造成的平面度总误差为5.5 μm,留30%余量后,确定重力和温度引起的平面度误差分配值分别为2 μm和7.2 μm。

     

  • 图 1  拼接焦面结构

    Figure 1.  Stitched focal plane structure

    图 2  主焦面平面度误差树

    Figure 2.  Main focal plane flatness error tree

    图 3  重力引起的主焦面变形分析

    Figure 3.  Analysis of distortion of the main focal plane due to gravity

    图 4  焦面热分析与温度场映射结果

    Figure 4.  Results of focal plane thermal analysis and temperature field mapping

    图 5  温度引起的主焦面变形分析

    Figure 5.  Analysis of deformation of the main focal plane due to temperature

    表  1  误差分配结果

    Table  1.   Results of the error distribution

    误差项范围/μm仿真结果/μm
    单片CMOS图像传感器感光面平面度≤20
    主焦面常温拼接后的变形:
    (a) 测量误差;
    (b) 拼接精度
    ≤8.5
    支撑结构装调引起的主焦面变形≤2
    在轨重力释放引起的主焦面变形≤21.55
    温度引起的主焦面变形:
    (a) 主焦面与安装基面温差过大;
    (b) 主焦面温度分布不均匀
    ≤7.25.5
    随机误差≤0.5
    合计≤40.2
    下载: 导出CSV
  • [1] 方成, 顾伯忠, 袁祥岩, 等. 2.5 m大视场高分辨率望远镜[J]. 中国科学:物理学 力学 天文学,2019,49(5):059603.

    FANG CH, GU B ZH, YUAN X Y, et al. 2.5 m wide-field and high-resolution telescope[J]. Scientia Sinica Physica,Mechanica &Astronomica, 2019, 49(5): 059603. (in Chinese)
    [2] 李宗轩, 金光, 张雷, 等. 3.5m口径空间望远镜单块式主镜技术展望[J]. 中国光学,2014,7(4):532-541.

    LI Z X, JIN G, ZHANG L, et al. Overview and outlook of monolithic primary mirror of spaceborne telescope with 3.5 m aperture[J]. Chinese Optics, 2014, 7(4): 532-541. (in Chinese)
    [3] 曹小涛, 孙天宇, 赵运隆, 等. 空间大口径望远镜稳像系统发展现状及趋势[J]. 中国光学,2014,7(5):739-748.

    CAO X T, SUN T Y, ZHAO Y L, et al. Current status and development tendency of image stabilization system of large aperture space telescope[J]. Chinese Optics, 2014, 7(5): 739-748. (in Chinese)
    [4] SAKO T, SEKIGUCHI T, SASAKI M, et al. MOA-cam3: a wide-field mosaic CCD camera for a gravitational microlensing survey in New Zealand[J]. Experimental Astronomy, 2008, 22(1): 51-66.
    [5] OLIVIER S S, SEPPALA L, GILMORE K, et al. LSST camera optics[J]. Proceedings of SPIE, 2006, 6273: 62730Y. doi: 10.1117/12.673235
    [6] OBUCHI Y, KOMIYAMA Y, KAMATA Y, et al. Hyper Suprime-Cam: implementation and performance of the cryogenic Dewar[J]. Proceedings of SPIE, 2012, 8446: 84466Q. doi: 10.1117/12.926961
    [7] KOMIYAMA Y, OBUCHI Y, NAKAYA H, et al. Hyper Suprime-Cam: camera Dewar design[J]. Publications of the Astronomical Society of Japan, 2018, 70(SP1): S2.
    [8] RASMUSSEN A P, HALE L, KIM P, et al. Focal plane metrology for the LSST camera[J]. Proceedings of SPIE, 2006, 6273: 62732U. doi: 10.1117/12.673210
    [9] TAKACS P Z, O'CONNOR P, RADEKA V, et al. LSST detector module and raft assembly metrology concepts[J]. Proceedings of SPIE, 2006, 6273: 62733Q. doi: 10.1117/12.673399
    [10] ROBBINS M S, BASTABLE M, BATES A, et al. Performance of the e2v 1.2 GPix cryogenic camera for the J-PAS 2.5m survey telescope[J]. Proceedings of SPIE, 2016, 9908: 990811. doi: 10.1117/12.2234626
    [11] TAYLOR K, MARÍN-FRANCH A, LAPORTE R, et al. JPCAM: a 1.2 GPIXEL camera for the J-PAS survey[J]. Journal of Astronomical Instrumentation, 2014, 3(1): 1350010. doi: 10.1142/S2251171713500104
    [12] PRATLONG J, WANG S Y, LEHNER M, et al. A 9 megapixel large-area back-thinned CMOS sensor with high sensitivity and high frame-rate for the TAOS II program[J]. Proceedings of SPIE, 2016, 9915: 991514.
    [13] WANG S Y, GEARY J C, AMATO S M, et al. High speed wide field CMOS camera for transneptunian automatic occultation survey[J]. Proceedings of SPIE, 2014, 9147: 914772.
    [14] 温敬阳. 光机热集成分析方法与技术研究[D]. 西安: 西安电子科技大学, 2008.

    WEN J Y. Research on methods and techniques of optomechanical integrated analysis[D]. Xi’an: Xidian University, 2008. (in Chinese)
    [15] 王增伟, 赵知诚, 杨溢, 等. 基于刚体运动完备方程的光机热集成分析方法[J/OL]. 红外与激光工程, (2021-11-11). http://kns.cnki.net/kcms/detail/12.1261.TN.20211110.1706.004.html.

    WANG Z W, ZHAO ZH CH, YANG Y, et al. . Thermal-structural-optical integrated analysis method based on the complete equations of rigid body motion[J/OL]. Infrared and Laser Engineering, (2021-11-11). http://kns.cnki.net/kcms/detail/12.1261.TN.20211110.1706.004.html. (in Chinese)
    [16] 赵晓东, 王晶. 米级口径经纬仪保护窗口镜面变形分析[J]. 中国光学,2018,11(4):654-661. doi: 10.3788/co.20181104.0654

    ZHAO X D, WANG J. Analysis of the mirror deformation of one-meter theodolite protective window[J]. Chinese Optics, 2018, 11(4): 654-661. (in Chinese) doi: 10.3788/co.20181104.0654
    [17] 张丽敏, 王富国, 安其昌, 等. Bipod柔性结构在小型反射镜支撑中的应用[J]. 光学 精密工程,2015,23(2):438-443. doi: 10.3788/OPE.20152302.0438

    ZHANG L M, WANG F G, AN Q CH, et al. Application of Bipod to supporting Structure of minitype reflector[J]. Optics and Precision Engineering, 2015, 23(2): 438-443. (in Chinese) doi: 10.3788/OPE.20152302.0438
    [18] 明名, 王建立, 张景旭, 等. 大口径望远镜光学系统的误差分配与分析[J]. 光学 精密工程,2009,17(1):104-108.

    MING M, WANG J L, ZHANG J X, et al. Error budget and analysis for optical system in large telescope[J]. Optics and Precision Engineering, 2009, 17(1): 104-108. (in Chinese)
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  458
  • HTML全文浏览量:  204
  • PDF下载量:  201
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-09
  • 修回日期:  2022-05-31
  • 网络出版日期:  2022-07-13

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!