留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

光学系统降敏设计方法综述

孟庆宇 秦子长 任成明 戚允升

孟庆宇, 秦子长, 任成明, 戚允升. 光学系统降敏设计方法综述[J]. 中国光学(中英文), 2022, 15(5): 863-877. doi: 10.37188/CO.2022-0096
引用本文: 孟庆宇, 秦子长, 任成明, 戚允升. 光学系统降敏设计方法综述[J]. 中国光学(中英文), 2022, 15(5): 863-877. doi: 10.37188/CO.2022-0096
MENG Qing-yu, QIN Zi-chang, REN Cheng-ming, QI Yun-sheng. Review of optical systems′ desensitization design methods[J]. Chinese Optics, 2022, 15(5): 863-877. doi: 10.37188/CO.2022-0096
Citation: MENG Qing-yu, QIN Zi-chang, REN Cheng-ming, QI Yun-sheng. Review of optical systems′ desensitization design methods[J]. Chinese Optics, 2022, 15(5): 863-877. doi: 10.37188/CO.2022-0096

光学系统降敏设计方法综述

doi: 10.37188/CO.2022-0096
基金项目: 中国科学院青年创新促进会(No. 2019219);中国科学院稳定支持基础研究领域青年团队计划(No. YSBR-066);国家自然科学基金(No. 61705220)
详细信息
    作者简介:

    孟庆宇(1986—),男,吉林长春人,博士,副研究员,硕士生导师,主要从事光学系统设计理论与设计方法、空间光学遥感器设计的研究。E-mail:mengqy@ciomp.ac.cn

    秦子长(1996—),辽宁锦州人,博士研究生,2018年于吉林大学的获得学士学位,主要从事光学系统设计方面的研究。E-mail:qinzichang@ciomp.ac.cn

  • 中图分类号: O439

Review of optical systems′ desensitization design methods

Funds: Supported by the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2019219); CAS Project for Young Scientists in Basic Research, Grant (No. YSBR-066); National Natural Science Foundtion of China (No. 61705220)
More Information
  • 摘要:

    光学系统性能的有效实现不仅依靠成像质量的设计结果,还受制于光学加工公差、装配公差、环境公差等多种公差的可实现性。具备低误差敏感度特征的光学系统,公差精度要求宽松,可以更好地抵抗误差引起的像质退化,在降低制造成本的同时,有效地提高了光学系统的可实现性,因此降低误差敏感度是光学系统设计应考虑的重要环节。本文分析了光学系统误差敏感度研究现状,总结了典型的光学系统降敏方法,并对这些方法在光学系统设计中的应用进行概述。最后,对光学系统低误差敏感度设计方法的未来发展进行了展望。

     

  • 图 1  光学系统不同误差类型的敏感度表现[12]

    Figure 1.  Sensitivity performance of different error types of optical systems[12]

    图 2  搜索低误差敏感度离轴三反光学系统初始结构的设计流程图[13]

    Figure 2.  Design flow chart for searching the initial structure of an off-axis three-mirror optical system with low error sensitivity[13]

    图 3  多重结构法示意图[14]

    Figure 3.  Schematic diagram of the multiple structure method[14]

    图 4  设计实例:(a)降敏设计前;(b)降敏设计后[15]

    Figure 4.  Design example: (a) before desensitization design; (b) after desensitization design[15]

    图 5  (a)应用非球面的手机相机设计布局图;(b)应用Q-type自由曲面手机相机设计布局图;(c)应用非球面的镜头元件4偏心30 μm后的MTF表现;(d)应用Q-type自由曲面的镜头元件4偏心30 μm后的MTF表现;(e)应用非球面及(f)应用Q-type自由曲面的镜头元件厚度变化10 μm的WFE [17]

    Figure 5.  (a) Mobile phone camera design layout with Power Series aspheres; (b) mobile phone camera design layout with Q-type aspheres; (c) MTF of Lens with Power Series aspheres element 4 with decenter of 30 μm; (d) MTF of Lens with Q-type aspheres element 4 with decenter of 30 μm; WFE of the lenses with (e) Power Series aspheres and (f) Q-type aspheres with a change in element thickness of 10 µm[17]

    图 6  非共轴自由曲面三反射镜光学系统[19]

    Figure 6.  Non-coaxial freeform three-mirror reflective optical system[19]

    图 7  降敏设计与分析:(a)优化前镜头;(b)优化后镜头;(c)优化前后光线入射角;(d)优化前后误差敏感度统计[21]

    Figure 7.  Desensitization design and analysis: (a) lens sections before GE2; (b) lens sections after GE2; (c) incident angles before and after GE2 and their differences; (d) statistical sensitivity to errors before and after GE2[21]

    图 8  降敏设计过程WFE与误差敏感度评价函数S的变化情况[25]

    Figure 8.  Variation of WFE and error sensitivity evaluation function S in the desensitization design process[25]

    图 9  降敏设计前后变化量对比;(a)S;(b)WFE[25]

    Figure 9.  S and ∆RMS WFE before and after desensitization

    图 10  光学系统面形误差敏感度曲线[26]

    Figure 10.  Sensitivity curve of the optical systems to surface figure errors[26]

    图 11  AOE降敏设计过程中的光学系统:离轴量(a)350 mm;(b)250 mm;(c)200 mm;(d)200 mm,倾斜三镜和像面消除光线遮拦和光线交叉[27]

    Figure 11.  Optical system in AOE desensitization design process:off-axis magnitude (a) 350 mm; (b) 250 mm; (c) 200 mm; (d) 200 mm, tilt tertiary mirror and image plane to eliminate ray obsuration and ray crossing[27]

    图 12  失调扰动引起的RMS WFE改变量[27]

    Figure 12.  RMS WFE increment caused by misalignment perturbations [27].

    图 13  摄影镜头:(a)降敏优化前;(b)降敏优化后[30]

    Figure 13.  Photographic lens (a) before and (b) after desensitization optimization[30]

    图 14  MTF下降概率(15 lp/mm);降敏优化前(阴影条),降敏优化后(黑条)[30]

    Figure 14.  Probable decreases of MTF at 15 lp/mm before (shadowed bars) and after desensitization optimization (black bars)[30]

    图 15  不同组合的非球面系数与误差敏感度关系。(a)弧矢方向偏心;(b)弧矢方向倾斜[31]

    Figure 15.  Relationship between aspheric coefficients and error sensitivity of different combinations. (a) Decenter in the x-direction. (b) Tilt in the x-direction [31]

    图 16  3种降敏设计方法设计结果。(a)减少高阶非球面系数的数量法;(b)多重结构法;(c)组合降敏设计方法[1]

    Figure 16.  Design results of three desensitization design methods. (a) The method of reducing the number of high-order aspheric coefficients. (b) Multiple structure method. (c) Combined desensitization design method[1]

    图 17  应用Leticia Carrión-Higueras的三种方法降敏设计前后对比图:(a)降敏设计前后透镜组的波像差;(b)降敏设计前后系统的MTF[1]

    Figure 17.  Comparison diagrams before and after desensitization design using three methods proposed by Leticia Carrión-Higueras. (a) WFE of lens group before and after desensitization design. (b) MTF of system before and after desensitization design[1]

    图 18  OPV推导用光学系统模型[32]

    Figure 18.  Optical system modelfor OPV derivation [32]

    图 19  降敏优化过程中ΔRMS WFE 与OPV 的变化情况[32]

    Figure 19.  Variation of OPV and ΔRMS WFE in desensitization optimization process[32]

    图 20  全局优化过程中对灵敏度进行控制[35]

    Figure 20.  Control of the sensitivity during global optimization[35]

    图 21  非球面微型相机镜头降敏设计对比:(a)全局搜索法;(b)全差分波前误差优化法;(c)降低光学入射角;(d)降低倾斜致彗差;(e)多重结构法;(f)降低偏心所致差分波前误差[37]

    Figure 21.  Comparison using different desensitization design methods for aspheric miniature camera lenses. (a) Global search method. (b) Full differential wavefront error integrated optimization. (c) Reduction of ray angle of incidence. (d) Reduction of tilt-induced axial coma. (e) Zoomed configurations. (f) Reduction of decenter-induced differential wavefront error[37]

    图 22  光学系统中次镜倾斜、偏心和错位产生的像差[40]

    Figure 22.  Misalignment aberrations for tilt, decenter and despace of the secondary mirror[40]

    图 23  三片式镜头。(a)降敏设计前;(b)降敏设计后[41]

    Figure 23.  Triplet lens (a) before and (b) after desensitization design[41]

    图 24  第二元件偏心−0.025 mm后的MTF(50 lp/mm)。(a)降敏设计前;(b)降敏设计后[41]

    Figure 24.  MTF at 50 lp/mm with second element decentered −0.025 mm (a) before and (b) after desensitization design[41]

    图 25  Petzval、Cooke和double-Gauss镜头评价平均值[42]

    Figure 25.  Average of two figures of merit for the Petzval, Cooke triplet and double-Gauss lenses[42]

    图 26  ZEMAX分析的Petzval、Cooke和double-Gauss镜头的半径、厚度、表面倾斜误差敏感度结果[42]

    Figure 26.  ZEMAX Tolerance sensitivity analysis by ZEMAX for the radius,thickness and surface tilt of Petzval, Cooke triplet and double-Gauss lenses[42]

    图 27  设计实例:(a)优化前;(b)优化后[45]

    Figure 27.  Design example. (a) Before optimization. (b) After optimization[45]

    图 28  优化前后的畸变敏感度: (a)表面偏心畸变敏感度;(b)表面倾斜畸变敏感度[45]

    Figure 28.  Distortion sensitivities before and after optimization. (a) Distortion sensitivity of the surface decenter. (b) Distortion sensitivity of the surface tilt[45]

    图 29  降敏设计前(a)、后(b)光学系统布局图

    Figure 29.  Layout of optical system before (a) and after (b) desensitization design[6]

    图 30  光学系统失调时产生的均方根像差量。(a)降敏设计前,(b)降敏设计后[6]

    Figure 30.  RMS aberration caused by misalignment of optical system. (a) Before desensitization design. (b) After desensitization design[6]

    图 31  在函数空间中绘制的通用多目标问题的解决方案[46]

    Figure 31.  Solutions for a generic multi-objective problem plotted in the functions space[46]

  • [1] CARRIÓN-HIGUERAS L, CALATAYUD A, SASIAN J M. Improving as-built miniature lenses that use many aspheric surface coefficients with two desensitizing techniques[J]. Optical Engineering, 2021, 60(5): 051208.
    [2] VAN BELLE G T, MEINEL A B, MEINEL M P. The scaling relationship between telescope cost and aperture size for very large telescopes[J]. Proceedings of SPIE, 2004, 5489: 563-570. doi: 10.1117/12.552181
    [3] STAHL H P, HENRICHS T. Preliminary multivariable cost model for space telescopes[J]. Proceedings of SPIE, 2010, 7731: 773104. doi: 10.1117/12.856214
    [4] SHOLL M J, LAMPTON M L, ALDERING G, et al. SNAP telescope[J]. Proceedings of SPIE, 2004, 5487: 1473-1483. doi: 10.1117/12.552081
    [5] 孟庆宇. 反射式光学系统误差敏感度理论及降敏设计方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.

    MENG Q Y. Research on error sensitivity theory and desensitization design method of reflective optical system[D]. Harbin: Harbin Institute of Technology, 2021. (in Chinese)
    [6] SASIAN J. Lens desensitizing: theory and practice[J]. Applied Optics, 2022, 61(3): A62-A67. doi: 10.1364/AO.443758
    [7] KUPER T, HARRIS T. A new look at global optimization for optical design[J]. Photonics Spectra, 1992, 1: 151-160.
    [8] KUPER T. Global optimization finds alternative lens designs[J]. Laser Focus World, 1992, 5: 193-195.
    [9] FORBES G, JONES A. Global optimization in lens design[J]. Optics and Photonics News, 1992, 3(3): 22. doi: 10.1364/OPN.3.3.000022
    [10] JONES A. Global optimization in lens design[D]. Rochester: University of Rochester, 1992.
    [11] STURLESI D, O'SHEA D. Global view of optical design space[J]. Optical Engineering, 1991, 30(2): 207-218. doi: 10.1117/12.55778
    [12] MCGUIRE J P JR. Designing easily manufactured lenses using a global method[J]. Proceedings of SPIE, 2006, 6342: 63420O. doi: 10.1117/12.692254
    [13] LIU X Y, GONG T T, JIN G F, et al. Design method for assembly-insensitive freeform reflective optical systems[J]. Optics Express, 2018, 26(21): 27798-27811. doi: 10.1364/OE.26.027798
    [14] FUSE K. Method for designing a refractive or reflective optical system and method for designing a diffraction optical element: US, 6567226[P]. 2003-05-20.
    [15] ROGERS J R. Using global synthesis to find tolerance-insensitive design forms[C]//International Optical Design Conference, Optica Publishing Group, 2006: TuA4.
    [16] MA B, THOMPSON K P, SHARMA K, et al. . Applying slope constrained Q-type aspheres to reduce sensitivity of optical systems[C]//Frontiers in Optics 2012, Optica Publishing Group, 2012: FTh3E. 3.
    [17] MA B, SHARMA K, THOMPSON K P, et al. Mobile device camera design with Q-type polynomials to achieve higher production yield[J]. Optics Express, 2013, 21(15): 17454-17463. doi: 10.1364/OE.21.017454
    [18] THOMPSON K P, SCHIESSER E, ROLLAND J P. Why are freeform telescopes less alignment sensitive than a traditional unobscured TMA?[J]. Proceedings of SPIE, 2015, 9633: 963317.
    [19] FUERSCHBACH K, DAVIS G E, THOMPSON K P, et al. Assembly of a freeform off-axis optical system employing three φ-polynomial Zernike mirrors[J]. Optics Letters, 2014, 39(10): 2896-2899. doi: 10.1364/OL.39.002896
    [20] 李闯, 薛常喜, 杨红芳, 等. 基于Q-type非球面的电子内窥镜物镜光学系统设计[J]. 光学学报,2017,37(6):0622001. doi: 10.3788/AOS201737.0622001

    LI CH, XUE CH X, YANG H F, et al. Optical system design of electronic endoscope objective with Q-type aspheres[J]. Acta Optica Sinica, 2017, 37(6): 0622001. (in Chinese) doi: 10.3788/AOS201737.0622001
    [21] ISSHIKI M, GARDNER L, GREGORY G G. Automated control of manufacturing sensitivity during optimization[J]. Proceedings of SPIE, 2004, 5249: 343-352. doi: 10.1117/12.514448
    [22] ISSHIKI M, SINCLAIR D C, KANEKO S. Lens design: global optimization of both performance and tolerance sensitivity[J]. Proceedings of SPIE, 2006, 6342: 63420N.
    [23] JEFFS M. Reduced manufacturing sensitivity in multi-element lens systems[J]. Proceedings of SPIE, 2002, 4832: IMC4.
    [24] 赵阳, 巩岩, 胡宜宁. 变焦距光学系统降低公差灵敏度的方法[J]. 光电工程,2009,36(7):121-125.

    ZHAO Y, GONG Y, HU Y N. Method of tolerance sensitivity reduction of zoom optical system[J]. Opto-Electronic Engineering, 2009, 36(7): 121-125. (in Chinese)
    [25] QIN Z CH, WANG X D, REN CH M, et al. Design method for a reflective optical system with low tilt error sensitivity[J]. Optics Express, 2021, 29(26): 43464-43479. doi: 10.1364/OE.447556
    [26] DENG Y T, JIN G F, ZHU J. Design method for freeform reflective-imaging systems with low surface-figure-error sensitivity[J]. Chinese Optics Letters, 2019, 17(9): 092201. doi: 10.3788/COL201917.092201
    [27] MENG Q Y, WANG H Y, WANG W, et al. Desensitization design method of unobscured three-mirror anastigmatic optical systems with an adjustment-optimization-evaluation process[J]. Applied Optics, 2018, 57(6): 1472-1481. doi: 10.1364/AO.57.001472
    [28] SASIAN J M, DESCOUR M R. Power distribution and symmetry in lens systems[J]. Optical Engineering, 1998, 37(3): 1001-1004. doi: 10.1117/1.601933
    [29] CHENG X M, WANG Y T, HAO Q, et al. Automatic element addition and deletion in lens optimization[J]. Applied Optics, 2003, 42(7): 1309-1317. doi: 10.1364/AO.42.001309
    [30] CHENG X M, WANG Y T, HAO Q. Study on tolerance sensitivity reduction in lens optimization[J]. Proceedings of SPIE, 2005, 5638: 36-42. doi: 10.1117/12.579822
    [31] SCADUTO L C N, SASIAN J, STEFANI M A, et al. Two-mirror telescope design with third-order coma insensitive to decenter misalignment[J]. Optics Express, 2013, 21(6): 6851-6865. doi: 10.1364/OE.21.006851
    [32] 孟庆宇, 汪洪源, 王维, 等. 基于光程变化量的反射式光学系统敏感度理论分析与降敏设计方法[J]. 光学精密工程,2021,29(1):72-83. doi: 10.37188/OPE.20212901.0072

    MENG Q Y, WANG H Y, WANG W, et al. Sensitivity theoretical analysis and desensitization design method for reflective optical system based on optical path variation[J]. Optics and Precision Engineering, 2021, 29(1): 72-83. (in Chinese) doi: 10.37188/OPE.20212901.0072
    [33] HASENAUER D. Optical System Tolerancing-A Key to Product Cost Reduction[Z]. Synopsys, Inc. , 2018.
    [34] SYNOPSYS. CODE V optimization reference manual[S]. Chapter 4 Error Functions, 2017.
    [35] YABE A. Sensitivity control to surface irregularity[J]. Proceedings of SPIE, 2006, 6342: 634225. doi: 10.1117/12.692246
    [36] YABE A. General method of sensitivity control for manufacturing errors[J]. Applied Optics, 2010, 49(27): 5175-5182. doi: 10.1364/AO.49.005175
    [37] BATES R. Performance and tolerance sensitivity optimization of highly aspheric miniature camera lenses[J]. Proceedings of SPIE, 2010, 7793: 779302. doi: 10.1117/12.860919
    [38] 王之江. 光学设计理论基础[M]. 北京: 科学出版社, 1965: 304-314.

    WANG ZH J. Theoretical Basis of Optical Design[M]. Beijing: Science Press, 1965: 304-314.
    [39] HOPKINS H H, TIZIANI H J. A theoretical and experimental study of lens centring errors and their influence on optical image quality[J]. British Journal of Applied Physics, 1966, 17(1): 33-54. doi: 10.1088/0508-3443/17/1/303
    [40] CATALAN G. Design method of an astronomical telescope with reduced sensitivity to misalignment[J]. Applied Optics, 1994, 33(10): 1907-1915. doi: 10.1364/AO.33.001907
    [41] BETENSKY E I. Aberration correction and desensitization of an inverse-triplet object lens[J]. Proceedings of SPIE, 1998, 3482: 264-268. doi: 10.1117/12.322011
    [42] WANG L R, SASIAN J M. Merit figures for fast estimating tolerance sensitivity in lens systems[J]. Proceedings of SPIE, 2010, 7652: 76521P. doi: 10.1117/12.868874
    [43] 张远健, 唐勇, 王鹏, 等. 光学系统设计中降低公差灵敏度的方法[J]. 光电工程,2011,38(10):127-133.

    ZHANG Y J, TANG Y, WANG P, et al. Method of tolerance sensitivity reduction of optical system design[J]. Opto-Electronic Engineering, 2011, 38(10): 127-133. (in Chinese)
    [44] 刘智颖, 吕知洋, 高柳絮. 红外显微光学系统的小像差互补设计方法[J]. 红外与激光工程,2021,50(2):20200153. doi: 10.3788/IRLA20200153

    LIU ZH Y, LV ZH Y, GAO L X. Design method of infrared microscope optical system with lower aberration compensation[J]. Infrared and Laser Engineering, 2021, 50(2): 20200153. (in Chinese) doi: 10.3788/IRLA20200153
    [45] ZHANG K, ZHONG X, WANG W, et al. Ultra-low-distortion optical system design based on tolerance sensitivity optimization[J]. Optics Communications, 2019, 437: 231-236. doi: 10.1016/j.optcom.2018.12.059
    [46] DE ALBUQUERQUE B F C, LIAO L Y, MONTES A S, et al. A multi-objective approach in the optimization of optical systems taking into account tolerancing[J]. Proceedings of SPIE, 2011, 8131: 813105. doi: 10.1117/12.894980
  • 加载中
图(31)
计量
  • 文章访问数:  107
  • HTML全文浏览量:  77
  • PDF下载量:  95
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-10
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-08-11

目录

    /

    返回文章
    返回