Loading [MathJax]/jax/output/HTML-CSS/jax.js

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

压缩光谱成像系统中物理实现架构研究综述

李云辉

乔闹生, 孙萍. CCD非线性效应对双频光栅三维面形测量的影响[J]. 中国光学(中英文), 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143
引用本文: 李云辉. 压缩光谱成像系统中物理实现架构研究综述[J]. 中国光学(中英文), 2022, 15(5): 929-945. doi: 10.37188/CO.2022-0104
QIAO Nao-sheng, SUN Ping. Influence of CCD nonlinearity effect on the three-dimensional shape measurement of dual frequency grating[J]. Chinese Optics, 2021, 14(3): 661-669. doi: 10.37188/CO.2020-0143
Citation: LI Yun-hui. Review of physical implementation architecture in compressive spectral imaging system[J]. Chinese Optics, 2022, 15(5): 929-945. doi: 10.37188/CO.2022-0104

压缩光谱成像系统中物理实现架构研究综述

基金项目: 国家自然科学基金项目(No. 62005266);中国科学院青年创新促进会(No. 2022219)
详细信息
    作者简介:

    李云辉(1989—),男,黑龙江哈尔滨人,博士,助理研究员,2012年与2014年于哈尔滨工业大学分别获得学士、硕士学位,2019年于中国科学院大学获得博士学位,主要从事新体制智能计算成像技术、空间光学遥感成像系统及空间目标稳像跟踪控制技术领域研究。E-mail:liyunhui@ciomp.ac.cn

  • 中图分类号: O439;TB133

Review of physical implementation architecture in compressive spectral imaging system

Funds: Supported by National Natural Science Foundation of China (No.62005266); Youth Innovation Promotion Association, CAS (No.2022219)
More Information
  • 摘要:

    不同于传统点对点映射成像方式,计算光学成像通过将前端光学信号的物理调控与后端数字信号的计算处理联合起来,使图像信息获取更加高效。这种新型成像体制有望缓解传统成像技术框架下低制造成本与高性能指标间的矛盾,尤其在高维图像信息获取中呈现更显著优势。而物理器件支撑下的系统架构一直是计算光学成像发展的基石,本文针对压缩光谱成像这一子技术领域,介绍了现有可实现空间或光谱调制的光学器件,并以此为基础对多型压缩光谱成像系统架构进行了梳理、归纳,依据信息调制过程的差异,将其规整为单像素光谱成像、编码孔径光谱成像、空间-光谱双重编码光谱成像、微阵列型光谱成像与散射介质光谱成像等几类。重点阐述了多种系统架构的信息调制与采集原理,以及对光谱图像数据立方体的调制效应,并讨论了其中的共性问题。最后给出了面临的技术挑战,探讨了未来发展趋势。

     

  • 三维面形测量系统具有非接触、高精度、快速、自动化等优点,广泛应用于机械零件的在线质量检测、服装制作、医学诊断等领域[1-6],已在国内外取得了较多的研究成果[7-13]。但在测量过程中,CCD非线性效应会导致频谱混叠,从而影响三维面形的测量精度,在这方面不少学者开展了大量研究[14-19]。如杜永兆等[6]分析了CCD非线性效应导致频谱混叠的原因,提出了消除频谱混叠的方法。于杰[7]提出了一种用于相移点衍射干涉仪的加权最小二乘相位提取算法,完全避免了CCD的二阶响应非线性。苏轲等[8]采用最佳的加权滤波窗口减弱了CCD非线性引起的频谱混叠对测量的影响。

    双频光栅投影的复杂物体三维面形测量应用广泛,研究意义重大[9-12]。如FU Y等[9]采用计算机编制双频光栅程序投射到测量对象上,经拼接得到目标图像,设计滤波器对高频和低频进行滤波,在低频相位差的基础上,计算出高频相位差,实现了三维轮廓测量。武迎春等[10]提出了一种包含两个调制频率的复合光栅投影方法,利用低频指导高频进行相位展开提高解相精度,降低了相邻载波通道中交流分量之间的傅立叶频谱重叠度。PENG K等[11]提出将双频光栅用于在线三维测量,在相位计算中避免了滤波过程中的有效信息损失,将被测物体的整个调制方式与像素匹配,提高了三维重建精度。ERYI H等[12]通过获取两幅图像中物体表面同一点对应的图像强度,采用双频技术提取出无相位模糊的真实相位,对大台阶试样的表面形貌进行了测量,取得了较好的实验效果。

    由于是用等效波长来衡量三维面形测量精度的[1],为了减小双频光栅三维测量中由于CCD非线性效应导致频谱混叠而影响测量精度,本文通过增大双频光栅的频率。

    针对CCD非线性效应对双频光栅三维测量的影响,本文分析了CCD非线性效应产生频谱混叠的原因,讨论了CCD非线性效应下的双频光栅测量原理,对双频光栅投影输出的变形条纹进行了仿真与实际实验测量,仿真与实验结果得到的数据验证了所提方法的正确性与有效性。

    三维面形测量系统光路图如图1所示,P1P2是投影仪光轴,L0是CCD光心I2与参考平面之间的距离,d是CCD光心I2与投影仪光心P2之间的距离,AC是参考平面上的两点,D是物体表面上某点,h是点D到参考平面间的距离。

    图  1  测量系统光路图
    Figure  1.  Optical path of measurement system

    ϕ(x,y)表示包含被测物体高度信息h(x,y)的相位。对于图1所示的测量系统,当L0h(x,y)时,h(x,y)ϕ(x,y)之间的关系可简单地表示为[1]

    h(x,y)=L02πf0dϕ(x,y), (1)

    式中f0为光栅基频。

    由式(1)可见,三维物体面形的高度信息h(x,y)可通过相位ϕ(x,y)求出。

    在实际工作中,现在的CCD精度很高,CCD输出光强与输入光强之间存在的二阶与三阶非线性效应是影响测量精度的主要因素,其他的四阶和五阶等高阶非线性效应对测量精度的影响非常小,可以忽略不计。CCD输出的干涉条纹光强为:

    g(x,y)=3λ=0{eλ[g0(x,y)]λ}, (2)

    式中g0(x,y)为输入的归一化光强度条纹, g(x,y)为实际捕获的归一化光强分布,eλ为系数。

    对式(2)进行傅立叶变换可得频谱为:

    G(fx,fy)=3λ=0Qλ(fxλf0,fyλf0)+3λ=0Qλ(fx+λf0,fy+λf0). (3)

    由式(3)可见,当CCD存在着非线性效应时,频谱上多出了二倍频、三倍频等高级频谱成份。因此在相位恢复过程中,二级与三级等高级频谱分量可能会与包含物体高度信息的基频分量发生混叠,从而影响基频分量信息的提取,最终影响相位恢复及物体高度信息的三维测量。

    复杂物体三维面形测量方法中,所采用的双频光栅测量集中了低频光栅和高频光栅各自的优点。投影低频光栅产生条纹得到的包裹相位为φ1(x,y),其展开相位ϕ1(x,y)相对容易展开,但精度较低。投影高频光栅产生条纹得到的包裹相位为φ2(x,y),其展开相位ϕ2(x,y)相对较难展开,但精度较高。

    在CCD存在着二阶与三阶非线性效应情况下,投影双频光栅产生的变形条纹的光强分布为:

    g(x,y)=3λ=0aλ(x,y)+2k=13λ=0{ckλ(x,y)exp[i2πλfkλ(x+y)]+ckλ(x,y)exp[i2πλfkλ(x+y)]}, (4)

    式中3λ=0aλ(x,y)为背景光强,ckλ(x,y)=0.5bkλ(x,y)exp[iλϕkλ(x,y)]表示复数共轭,bkλ(x,y)表示条纹模式中调制幅度相关的光强度,ϕkλ(x,y)表示包含物体高度信息的相位,fkλ(x,y)表示光栅的频率。

    对式(4)进行傅立叶变换可得频谱为:

    G(fx,fy)=3λ=0Aλ(fx,fy)+2k=13λ=0[Qkλ(fxλfk,fyλfk)+Qkλ(fx+λfk,fy+λfk)], (5)

    式(5)中当k=1时,fk表示低频光栅的基频,当k=2时,表示高频光栅的基频(以下同),背景光强产生的系列频谱3λ=0Aλ(fx,fy)能够通过π相移技术消除[13], 其中Qkλ(fxλfk,fyλfk)Qkλ(fx+λfk,fy+λfk)分别是ckλ(x,y)exp[i2πλfk(x+y)ckλ(x,y)exp[i2πλfk(x+y)经过傅立叶变换后得到的系列频谱。

    由式(5)可见,投影双频光栅产生的变形条纹经傅立叶变换后,频谱中除了产生基频外,还会产生二阶、三阶等高阶非线性引起的高级频谱成份,这些高级频谱成份可能会与基频发生混叠,从而影响基频中包含物体高度信息的提取,使测量精度降低。

    由于CCD非线性效应导致双频光栅测量中基频与高级频谱发生混叠,减小混叠使各级频谱相互分离可以提高测量精度。测量精度是由等效波长来衡量的,等效波长由L0/dfk来决定[1]。它们之间有以下关系:

    |h(x,y)ϕ(x,y)|=L02πfkd=L0/d2πfk, (6)

    式中L0/dfk的比值越小则测量精度越大,而降低L0/d会影响测量范围[1]。因而,在理想情况下保持L0/d不变,在保证CCD分辨率的前提下,通过增大光栅的基频fk来增大测量精度,测量精度增大了也就意味着基频与高级频谱间的混叠减小了,这样也就减小或消除了CCD的非线性效应。

    根据式(1),在使用双频光栅投影测量三维物体面形时,对于高度为h(x,y)的物体上的某点,可得到如下关系:

    h(x,y)=L02πf1dϕ1(x,y)=L02πf2dϕ2(x,y). (7)

    由式(7)可得

    mf=ϕ2(x,y)ϕ1(x,y)=f2f1. (8)

    由于只考虑了来自低频光栅与高频光栅的基频。选择适合的双频光栅基频f1f2,采用低通滤波器对消除了频谱混叠的式(5)中的频谱进行滤波,滤出双频光栅产生的基频成份Q11(fxf1,fyf1)Q21(fxf2,fyf2),可得到展开相位ϕ1(x,y)ϕ2(x,y)。展开相位ϕk(x,y)与包裹相位φk(x,y)之间的关系为:

    ϕk(x,y)=φk(x,y)+2πnk(x,y)k=1,2, (9)

    式中n1(x,y)n2(x,y)分别为低频光栅和高频光栅产生的条纹整数级数。对于物体的同一点,存在如下关系:

    n2(x,y)n1(x,y)=f2f1. (10)

    联合式(7)~式(10)可得

    n2(x,y)=(INT){mfn1(x,y)+12π[mfϕ1(x,y)ϕ2(x,y)]}, (11)

    式中(INT){}表示整数运算符,可以准确地确定与较高频率相关的展开相位ϕ2(x,y)

    可见,n2(x,y)能够由mfn1(x,y)φ1(x,y)φ2(x,y)确定,代入式(9)可得到ϕ2(x,y),最后可由式(7)得到包含物体高度信息的三维物体面形。

    为了验证基本原理分析的正确性,现用计算机仿真与实验进行验证。

    设测量系统的几何参数为L0/d=4,低频光栅的频率为f1=1/27mm1,高频光栅的频率为f2=1/9mm1,则mf=3模拟物体如图2(a)所示,大小为512pixel×512pixel。设CCD为线性且存在着非线性效应,投影双频光栅产生的变形条纹光强分布为:g1(x,y)=g(x,y)g2(x,y)=0.18+1.32g(x,y)0.42g2(x,y)。两种情况下的变形条纹光强经傅立叶变换后得到的沿着x轴方向的频谱分布分别如图2(b)2(c)所示。

    图  2  模拟物体及沿着x轴方向频谱分布
    Figure  2.  Simulation object and spectrum distributions along x axis

    可见,图2(b)中只有低频光栅与高频光栅各自产生的基频,而图2(c)中因CCD的非线性效应的存在,还含有低频光栅与高频光栅各自产生的高阶频谱成份,且与基频等频谱发生了混叠。

    设测量系统的几何参数为L0/d=2.25,低频光栅与高频光栅的基频分别为f1=1/32mm1f2=1/8mm1,来自理想CCD系统的变形条纹光强为g(x,y)=0.5+0.5[cos(2πf1x+φ(x,y))+cos(2πf2x+φ(x,y))],来自存在非线性效应系统输出的变形条纹光强为g1(x,y)=0.150.13g(x,y)+2.34g2(x,y)

    模拟物体如图3(a)所示,其高度的最大绝对值与平均绝对值分别为24.3181 mm和1.0839 mm;通过双频光栅后的变形条纹光强如图3(b)所示;变形条纹光强经傅立叶变换后得到的沿着x轴方向频谱如图3(d)所示;恢复物体面形后的绝对高度差如图3(f)所示,测量值与实际值之间的最大绝对高度误差与平均绝对高度误差分别为0.8950 mm和0.0622 mm。

    图  3  系统存在非线性效应时仿真结果图
    Figure  3.  Simulation results when the system has nonlinearity effect

    保持系统的测量参数不变,使低频光栅与高频光栅的基频分别增加为f1=1/16mm1f2=1/4mm1,模拟物体通过双频光栅后的变形条纹、变形条纹光强经傅立叶变换后得到沿着x轴方向的频谱及绝对高度差分别如图3(c)3(e)3(g)所示,测量值与实际值之间的最大绝对高度误差与平均绝对高度误差分别为0.3710 mm和0.0232 mm。

    比较图3(d)3(e)可见,增大双频光栅各自的基频,可以使双频光栅各自产生的基频较好地分离,同时使同一光栅产生的基频与高级频谱较好地分离。比较图3(f)3(g)可见,增大双频光栅各自的基频,可以明显提高三维物体的测量精度。

    为了进一步证明基本原理分析的正确性,采用如图4所示的实验装置进行实验。通过MATLAB软件编写程序得到低频光栅与高频光栅的基频分别为f1=1/40mm1f2=1/10mm1,则其频率比为mf=4。再由式(4)得到双频光栅的变形条纹光强,投影双频光栅条纹到被测物体表面。

    图  4  实验装置示意图
    Figure  4.  Schematic diagram of experimental setup

    系统为非线性时,在满足抽样条件下,投影双频光栅条纹到被测物体上产生的变形条纹如图5(a)所示,变形条纹经傅立叶变换后所得到的频谱如图5(c)所示,恢复的三维物体面形如图5(e)所示。再根据实验结果,由MATLAB软件编写程序,得到提升的低频光栅与高频光栅的基频分别为f1=1/16mm1f2=1/4mm1,因而使低频光栅与高频光栅的基频都同等增加了2.5倍,此时得到新的双频光栅变形条纹、变形条纹经傅立叶变换后的频谱、恢复的三维物体面形分别如图5(b)5(d)5(f)所示。

    比较图5(c)5(d)可见,两个图的频谱中除了低频光栅与高频光栅各自的包含物体高度信息的基频成份外,还有由各自产生的二阶、三阶等高阶非线性引起的高级频谱成份,两图中的基频都与各自的二级、三级等高级频谱成份混叠了。但是图5(c)的基频与二级、三级等高级频谱间混叠较多,而图5(d)的基频与各高级频谱间分离较好且混叠很少。

    比较图5(e)5(f)可见,图5(f)的恢复效果明显比图5(e)的效果好很多。图5(f)的额头、下巴、鼻子、脸颊等轮廓表面都比图5(e)的清晰且平滑,图5(e)的额头恢复效果较差,明显多出一道沟壑。

    图  5  系统为非线性情况时的实验结果图
    Figure  5.  Experimental results when the system has nonlinearity effect

    为了减小CCD非线性效应对复杂光学三维面形测量精度的影响,提出了采用双频光栅投影消除CCD非线性效应并提高测量精度的方法。分析了CCD非线性效应及高级频谱成份产生的基本原因,讨论了CCD非线性效应下的双频光栅测量原理,并给出了理论分析和解析推导。仿真物体最大绝对值与平均绝对值分别为24.3181 mm和1.0839 mm,得到最大绝对高度误差与平均绝对高度误差分别为0.8950 mm和0.0622 mm,双频光栅基频都提高后,两个值分别减小为0.3710 mm和0.0232 mm。在实验结果中,当双频光栅的基频都同等增加2.5倍后,频谱中的基频与高级频谱间分离较好,测量精度明显提高。

  • 图 1  光学器件对信息的调制效应

    Figure 1.  Modulation effects of optical devices on information

    图 2  单像素光谱成像系统架构及相应的空间-光谱数据立方体调制过程:(a) 基于光谱仪的单像素光谱成像仪;(b) 空间-光谱调制单像素光谱成像仪;(c) 光谱分离单像素光谱成像仪;(d) 空间-光谱调制光谱成像仪

    Figure 2.  Single pixel spectral imaging system architecture and its corresponding spatial-spectral data cube modulation diagram. (a) Spectrometer-based single pixel spectral imager; (b) spatial-spectral modulation single-pixel spectral imager; (c) spectral unmixing single pixel spectral imager; (d) spatial-spectral modulation spectral imager

    图 3  CASSI系统基本型式:(a) 单色散CASSI;(b) 双色散CASSI

    Figure 3.  Basic types of CASSI system. (a) SD-CASSI; (b) DD-CASSI

    图 4  CASSI系统彩色编码孔径型式:(a) 彩色CASSI;(b) 压缩光谱图案式快照成像仪;(c) 基于变形镜的CSPSI

    Figure 4.  Colored coded aperture types of CASSI system. (a) C-CASSI; (b) CSPSI; (c) DM-based CSPSI

    图 5  CASSI系统光谱分割型式

    Figure 5.  Spectral unmixing type of CASSI system

    图 6  CASSI系统编码可调整型式

    Figure 6.  Coding adjustable type of CASSI system

    图 7  CASSI系统多帧互补采集型式:(a) 双相机CASSI;(b) 零级与一级衍射CASSI

    Figure 7.  Multi-frame complementary acquisition type of CASSI system. (a) Dual-camera CASSI; (b) 0th and 1st order diffraction CASSI

    图 8  CASSI系统多帧阵列采集型式:(a) 图像倍增CASSI;(b) 透镜阵列CASSI

    Figure 8.  Multi-frame array acquisition type of CASSI system. (a) Image multiplier CASSI; (b) lenslet array CASSI

    图 9  DCSI系统架构:(a) 双重编码孔径光谱成像仪;(b) 空间-光谱编码压缩成像仪

    Figure 9.  Architecture of DCSI System. (a) DCSI; (b) SSCSI

    图 10  微阵列型光谱成像架构:(a) 左上为紧凑型超光谱成像仪,左中为陷波滤波器阵列光谱成像仪,左下为基于FPRA阵列的光谱成像仪;(b) 像素级FPRA阵列光谱成像仪

    Figure 10.  Architecture of microarray spectral imaging. (a) Top left is the MUSI,middle left is the notch filter array spectral imager, bottom left is FPRA-based spectral imager;(b) pixel-level FPRA-based spectral imager

    图 11  散射介质光谱成像架构

    Figure 11.  Architecture of spectral imaging through scattering media

    表  1  各系统型式特征总结

    Table  1.   Summary of the characteristics of each system type

    系统型式类别系统名称调制方式物理器件对应图表
    单像素光谱成像基于光谱仪的单像素光谱成像仪[6-11]空间调制,光谱分离DMD,色散元件图2(a)
    空间-光谱调制单像素光谱成像仪[12]空间调制,光谱调制DMD,衍射光栅,正弦调制转轮图2(b)
    光谱分离单像素光谱成像仪[13-14]光谱分离,空间调制光谱分离器,SLM图2(c)
    空间-光谱调制光谱成像仪[15]空间调制,光谱调制SLM+色散棱镜+DMD+柱状透镜图2(d)
    编码孔径光谱成像(基本型式)SD-CASSI [16-18]空间调制,光谱剪切光刻掩模板+色散棱镜图3(a)
    DD-CASSI [19]光谱剪切,空间调制,光谱逆剪切色散棱镜+光刻掩模板+色散棱镜图3(b)
    编码孔径光谱成像(CCA型式)C-CASSI [23-30]空间-光谱调制,光谱剪切光谱滤波阵列+色散棱镜图4(a)
    CSPSI [31-34]光谱剪切,空间-光谱调制色散棱镜+光谱滤波阵列图4(b)
    DM-based CSPSI [36]空间复用,空间-光谱调制DM+光谱滤波阵列图4(c)
    编码孔径光谱成像(光谱分割型式)LCTF光谱分割型[37-38]光谱分离,空间调制LCTF+DMD图5左上
    LeSTI [39]LED+DMD图5左下
    编码孔径光谱成像(编码可调整型式)CAASI [40-44]空间调制(时变),光谱剪切DMD(时变)/压电陶瓷,色散棱镜/
    CSPSI [45]光谱剪切(时变),空间-光谱调制色散棱镜(旋转),光谱滤波阵列图6
    编码孔径光谱成像(多帧互补采集型式)Dual-camera CASSI [46,47]通道1:空间调制,光谱剪切

    通道2:空间-光谱调制(彩色相机)
    分束镜,光刻掩膜板,色散棱镜图7(a)
    0th and 1st order diffraction CASSI [48-50]通道1(1st衍射光):空间调制,光谱剪切;
    通道2 (0th 衍射光):无调制
    (全色相机)
    DMD,衍射光栅图7(b)
    编码孔径光谱成像(多帧阵列采集型式)图像倍增CASSI [52]空间复制,空间调制,光谱剪切图像倍增器,光刻掩模板,
    色散棱镜
    图8(a)
    透镜阵列CASSI [53]空间复制,光谱剪切,空间调制,
    光谱逆剪切
    透镜阵列,色散棱镜,光刻掩模板,色散棱镜图8(b)
    空间-光谱双重编码光谱成像DCSI [55-57]空间调制+光谱调制DMD+衍射光栅+LCoS图9(a)
    SSCSI [58-61]空间光谱混合调制衍射光栅+光刻掩模板图9(b)
    微阵列型光谱成像MUSI[62-64]光谱调制(时间延展)LCC图10(a)左上
    陷波滤波器阵列光谱成像仪[65]空间复制,光谱调制陷波滤波器阵列,透镜阵列图10(a)左中
    FPRA阵列光谱成像仪[66]空间复制,光谱调制FPRA,透镜阵列图10(a)左下
    像素级FPRA阵列光谱成像仪[66]空间-光谱调制(像素级)FPRA图10(b)
    散射介质光谱成像散射介质光谱成像仪[67-72]空间-光谱复用调制散射介质/DFA图11
    下载: 导出CSV
  • [1] 于磊. 成像光谱仪的发展与应用(特邀)[J]. 红外与激光工程,2022,51(1):20210940.

    YU L. Development and application of imaging spectrometer (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210940. (in Chinese)
    [2] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582
    [3] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083
    [4] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731
    [5] YUAN X, BRADY D J, KATSAGGELOS A K. Snapshot compressive imaging: theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88. doi: 10.1109/MSP.2020.3023869
    [6] SUN T, KELLY K. Compressive sensing hyperspectral imager[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2009: CTuA5.
    [7] LI CH B, SUN T, KELLY K F, et al. A compressive sensing and unmixing scheme for hyperspectral data processing[J]. IEEE Transactions on Image Processing, 2012, 21(3): 1200-1210. doi: 10.1109/TIP.2011.2167626
    [8] MAGALHAES F, ARAÚJO F M, CORREIA M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing[J]. Optical Engineering, 2012, 51(7): 071406. doi: 10.1117/1.OE.51.7.071406
    [9] CHENNING T, HUANZHENG Z, XUCHENG W, et al. Compressive single-pixel hyperspectral imaging using RGB sensors[J]. Optics Express, 2021, 29(7): 11207-11220. doi: 10.1364/OE.416388
    [10] KRAVETS V, KONDRASHOV P, STERN A. Compressive ultraspectral imaging using multiscale structured illumination[J]. Applied Optics, 2019, 58(22): F32-F39. doi: 10.1364/AO.58.000F32
    [11] GARCIA H, CORREA C V, ARGUELLO H. Optimized sensing matrix for single pixel multi-resolution compressive spectral imaging[J]. IEEE Transactions on Image Processing, 2020, 29: 4243-4253. doi: 10.1109/TIP.2020.2971150
    [12] BIAN L H, SUO J L, SITU G H, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6: 24752. doi: 10.1038/srep24752
    [13] STARLING D J, STORER I, HOWLAND G A. Compressive sensing spectroscopy with a single pixel camera[J]. Applied Optics, 2016, 55(19): 5198-5202. doi: 10.1364/AO.55.005198
    [14] LI Z W, SUO J L, HU X M, et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation[J]. Scientific Reports, 2017, 7: 41435. doi: 10.1038/srep41435
    [15] MARTÍN G, BIOUCAS-DIAS J M. Spatial-spectral hyperspectral image compressive sensing[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2017: 3988-3991.
    [16] WAGADARIKAR A, JOHN R, WILLETT R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51. doi: 10.1364/AO.47.000B44
    [17] CAO X, YUE T, LIN X, et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world[J]. IEEE Signal Processing Magazine, 2016, 33(5): 95-108. doi: 10.1109/MSP.2016.2582378
    [18] HE J J, WU J M, LU ZH, et al. . Compressive hyperspectral imaging for snapshot multi-channel fluorescence microscopy[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2018: CW2E. 5.
    [19] GEHM M E, JOHN R, BRADY D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027. doi: 10.1364/OE.15.014013
    [20] ZHAO ZH X, MENG Z Y, JU ZH Y, et al. . A compact dual-dispersion architecture for snapshot compressive spectral imaging[C]. Proceedings of 2021 Asia Communications and Photonics Conference, IEEE, 2021: 1-3.
    [21] RUEDA C H F, CALDERÓN G A R, FUENTES H A. Spectral selectivity in compressive spectral imaging based on grayscale coded apertures[C]. Proceedings of Symposium of Signals, Images and Artificial Vision, IEEE, 2013: 1-5.
    [22] DIAZ N, RUEDA H, ARGUELLO H. High-dynamic range compressive spectral imaging by adaptive filtering[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, IEEE, 2015: 89-93.
    [23] RUEDA H, ARGUELLO H, ARCE G R. Experimental demonstration of a colored coded aperture-based compressive spectral imaging system[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2014: CTu2C. 6.
    [24] ARGUELLO H, ARCE G R. Colored coded aperture design by concentration of measure in compressive spectral imaging[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1896-1908. doi: 10.1109/TIP.2014.2310125
    [25] RUEDA H, ARGUELLO H, ARCE G R. Compressive spectral imaging based on colored coded apertures[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2014: 7799-7803.
    [26] RUEDA H, ARGUELLO H, ARCE G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A, 2015, 32(1): 80-89. doi: 10.1364/JOSAA.32.000080
    [27] RUEDA H, ARGUELLO H, ARCE G R. Colored coded aperture compressive spectral imaging: design and experimentation[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 601-604.
    [28] RUEDA H, ARGUELLO H, ARCE G R. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays[J]. Applied Optics, 2016, 55(33): 9584-9593. doi: 10.1364/AO.55.009584
    [29] GALVIS L, MOJICA E, ARGUELLO H, et al. Shifting colored coded aperture design for spectral imaging[J]. Applied Optics, 2019, 58(7): B28-B38. doi: 10.1364/AO.58.000B28
    [30] PARADA-MAYORGA A, ARCE G R. Spectral super-resolution in colored coded aperture spectral imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(4): 440-455. doi: 10.1109/TCI.2016.2612943
    [31] RUEDA H, LAU D, ARCE G R. RGB detectors on compressive snapshot multi-spectral imagers[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 388-392.
    [32] CORREA C V, ARGUELLO H, ARCE G R. Compressive spectral imaging with colored-patterned detectors[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2014: 7789-7793.
    [33] CORREA C V, ARGUELLO H, ARCE G R. Snapshot colored compressive spectral imager[J]. Journal of the Optical Society of America A, 2015, 32(10): 1754-1763. doi: 10.1364/JOSAA.32.001754
    [34] MEJÍA-MELGAREJO Y H, VILLARREAL-DULCEY O P, ARGUELLO-FUENTES H. Adjustable spatial resolution of compressive spectral images sensed by multispectral filter array-based sensors[J]. Revista Facultad de Ingeniería, 2016(78): 89-98.
    [35] MARQUEZ M, MEZA P, ARGUELLO H, et al. Compressive spectral imaging via deformable mirror and colored-mosaic detector[J]. Optics Express, 2019, 27(13): 17795-17808. doi: 10.1364/OE.27.017795
    [36] MONAKHOVA K, YANNY K, WALLER L. Snapshot hyperspectral imaging using a random phase mask and spectral filter array[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2020: JF2F. 4.
    [37] WANG X, ZHANG Y H, MA X, et al. Compressive spectral imaging system based on liquid crystal tunable filter[J]. Optics Express, 2018, 26(19): 25226-25243. doi: 10.1364/OE.26.025226
    [38] XU C, XU T F, YAN G, et al. Super-resolution compressive spectral imaging via two-tone adaptive coding[J]. Photonics Research, 2020, 8(3): 395-411. doi: 10.1364/PRJ.377665
    [39] MA X, YUAN X, FU CH, et al. LED-based compressive spectral-temporal imaging[J]. Optics Express, 2021, 29(7): 10698-10715. doi: 10.1364/OE.419888
    [40] ARCE G R, BRADY D J, CARIN L, et al. Compressive coded aperture spectral imaging: an introduction[J]. IEEE Signal Processing Magazine, 2014, 31(1): 105-115. doi: 10.1109/MSP.2013.2278763
    [41] KITTLE D, CHOI K, WAGADARIKAR A, et al. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Applied Optics, 2010, 49(36): 6824-6833. doi: 10.1364/AO.49.006824
    [42] ARGUELLO H, ARCE G R. Code aperture optimization for spectrally agile compressive imaging[J]. Journal of the Optical Society of America A, 2011, 28(11): 2400-2413. doi: 10.1364/JOSAA.28.002400
    [43] KITTLE D S, MARKS D L, BRADY D J. Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager[J]. Optical Engineering, 2012, 51(7): 071403. doi: 10.1117/1.OE.51.7.071403
    [44] WU Y H, MIRZA I O, ARCE G R, et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 2011, 36(14): 2692-2694. doi: 10.1364/OL.36.002692
    [45] CORREA C V, HINOJOSA C A A, ARCE G R, et al. Multiple snapshot colored compressive spectral imager[J]. Optical Engineering, 2017, 56(4): 041309.
    [46] WANG L ZH, XIONG ZH W, GAO H H, et al. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858. doi: 10.1364/AO.54.000848
    [47] WANG L ZH, XIONG ZH W, SHI G M, et al. . Compressive hyperspectral imaging with complementary RGB measurements[C]. Proceedings of 2016 Visual Communications and Image Processing, IEEE, 2016: 1-4.
    [48] ŽÍDEK K, DENK O, HLUBUČEK J, et al. Compact and robust hyperspectral camera based on compressed sensing[J]. Proceedings of the SPIE, 2016, 10151: 101510N.
    [49] HLUBUČEK J, LUKEŠ J, VÁCLAVÍK J, et al. Enhancement of CASSI by a zero-order image employing a single detector[J]. Applied Optics, 2021, 60(5): 1463-1469. doi: 10.1364/AO.414402
    [50] SAITA Y, SHIMOYAMA D, TAKAHASHI R, et al. Single-shot compressive hyperspectral imaging with dispersed and undispersed light using a generally available grating[J]. Applied Optics, 2022, 61(5): 1106-1111. doi: 10.1364/AO.441568
    [51] HLUBUČEK J, LUKEŠ J, VÁCLAVÍK J, et al. Differential coded aperture single-snapshot spectral imaging[J]. Optics Letters, 2022, 47(9): 2342-2345. doi: 10.1364/OL.454729
    [52] JEON D S, CHOI I, KIM M H. Multisampling compressive video spectroscopy[J]. Computer Graphics Forum, 2016, 35(2): 467-477. doi: 10.1111/cgf.12847
    [53] BLANCO G, PEREZ J, MONSALVE J, et al. . Single snapshot system for compressive covariance matrix estimation for hyperspectral imaging via lenslet array[C]. Proceedings of the 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision, IEEE, 2021: 1-5.
    [54] MARQUEZ M, MONSALVE J, RUEDA H, et al. . Compressive spectral virtual multishot imager via lenslet array[C]. Proceedings of Optics and Photonics for Sensing the Environment, Optica Publishing Group, 2021: JW2A. 14.
    [55] AUGUST Y, VACHMAN C, RIVENSON Y, et al. . Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 2013, 52(10): D46-D54.
    [56] STERN A, YITZHAK A, FARBER V, et al. . Hyperspectral compressive imaging[C]. Proceedings of the 2013 12th Workshop on Information Optics, IEEE, 2013: 1-3.
    [57] LIN X, WETZSTEIN G, LIU Y B, et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 2014, 39(7): 2044-2047. doi: 10.1364/OL.39.002044
    [58] LIN X, LIU Y B, WU J M, et al. Spatial-spectral encoded compressive hyperspectral imaging[J]. ACM Transactions on Graphics, 2014, 33(6): 233.
    [59] WANG P, LI J, QI CH, et al. Input aperture restriction of the spatial spectral compressive spectral imager and a comprehensive solution for it[J]. Optics Express, 2021, 29(12): 17875-17889. doi: 10.1364/OE.422090
    [60] SALAZAR E, PARADA A, ARCE G R. Spatial super-resolution reconstruction via SSCSI compressive spectral imagers[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2018: CTu5D. 5.
    [61] SALAZAR E, PARADA-MAYORGA A, ARCE G R. Spectral zooming and resolution limits of spatial spectral compressive spectral imagers[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 165-179. doi: 10.1109/TCI.2019.2893596
    [62] STERN A, AUGUST I Y, OIKNINE Y. Compressive gigavoxel spectral imaging[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2016: CW5D. 1.
    [63] OIKNINE Y, AUGUST I, STERN A. Along-track scanning using a liquid crystal compressive hyperspectral imager[J]. Optics Express, 2016, 24(8): 8446-8457. doi: 10.1364/OE.24.008446
    [64] AUGUST I, OIKNINE Y, ABULEIL M, et al. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder[J]. Scientific Reports, 2016, 6: 23524. doi: 10.1038/srep23524
    [65] ZHANG M Q, WANG L ZH, ZHANG L, et al. High light efficiency snapshot spectral imaging via spatial multiplexing and spectral mixing[J]. Optics Express, 2020, 28(14): 19837-19850. doi: 10.1364/OE.393173
    [66] OIKNINE Y, AUGUST I, STERN A. Multi-aperture snapshot compressive hyperspectral camera[J]. Optics Letters, 2018, 43(20): 5042-5045. doi: 10.1364/OL.43.005042
    [67] GOLUB M A, AVERBUCH A, NATHAN M, et al. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser[J]. Applied Optics, 2016, 55(3): 432-443. doi: 10.1364/AO.55.000432
    [68] HAUSER J, GOLUB M A, AVERBUCH A, et al. Dual-camera snapshot spectral imaging with a pupil-domain optical diffuser and compressed sensing algorithms[J]. Applied Optics, 2020, 59(4): 1058-1070. doi: 10.1364/AO.380256
    [69] HAUSER J, AVERBUCH A, NATHAN M, et al. Design of binary-phase diffusers for a compressed sensing snapshot spectral imaging system with two cameras[J]. Applied Optics, 2020, 59(26): 7853-7864. doi: 10.1364/AO.395541
    [70] SAHOO S K, TANG D L, DANG C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 2017, 4(10): 1209-1213. doi: 10.1364/OPTICA.4.001209
    [71] WANG P, MENON R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics[J]. Optica, 2015, 2(11): 933-939. doi: 10.1364/OPTICA.2.000933
    [72] WANG P, MENON R. Computational multispectral video imaging [Invited][J]. Journal of the Optical Society of America A, 2018, 35(1): 189-199. doi: 10.1364/JOSAA.35.000189
    [73] DUARTE M F, BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504. doi: 10.1109/TIP.2011.2165289
    [74] CAIAFA C F, CICHOCKI A. Multidimensional compressed sensing and their applications[J]. WIREs Data Mining and Knowledge Discovery, 2013, 3(6): 355-380. doi: 10.1002/widm.1108
    [75] LU Y, WONG T T W, CHEN F, et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 2019, 122(19): 193904. doi: 10.1103/PhysRevLett.122.193904
    [76] YANG CH SH, CAO F Y, QI D L, et al. Hyperspectrally compressed ultrafast photography[J]. Physical Review Letters, 2020, 124(2): 023902. doi: 10.1103/PhysRevLett.124.023902
    [77] PARK J, FENG X H, LIANG R G, et al. Snapshot multidimensional photography through active optical mapping[J]. Nature Communications, 2020, 11(1): 5602. doi: 10.1038/s41467-020-19418-0
  • 期刊类型引用(4)

    1. 乔闹生,尚雪. 抽样对三维形貌测量的影响(英文). 中国光学(中英文). 2024(06): 1512-1520 . 百度学术
    2. 乔闹生,尚雪. 非线性系统中双频光栅相位测量(英文). 中国光学(中英文). 2023(03): 726-732 . 百度学术
    3. 嵇晓强,刘振瑶,李炳霖,饶治,李贵文,粟立威. 面部视频非接触式生理参数感知. 中国光学. 2022(02): 276-285 . 百度学术
    4. 刘飞,罗惠方,江翰立,张茵楠,严谨. 改进的三频三步相移结构光三维重建方法. 红外与激光工程. 2022(04): 304-312 . 百度学术

    其他类型引用(2)

  • 加载中
图(11) / 表(1)
计量
  • 文章访问数:  2030
  • HTML全文浏览量:  559
  • PDF下载量:  576
  • 被引次数: 6
出版历程
  • 收稿日期:  2022-05-26
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-08-29

目录

/

返回文章
返回