Review of physical implementation architecture in compressive spectral imaging system
-
摘要:
不同于传统点对点映射成像方式,计算光学成像通过将前端光学信号的物理调控与后端数字信号的计算处理联合起来,使图像信息获取更加高效。这种新型成像体制有望缓解传统成像技术框架下低制造成本与高性能指标间的矛盾,尤其在高维图像信息获取中呈现更显著优势。而物理器件支撑下的系统架构一直是计算光学成像发展的基石,本文针对压缩光谱成像这一子技术领域,介绍了现有可实现空间或光谱调制的光学器件,并以此为基础对多型压缩光谱成像系统架构进行了梳理、归纳,依据信息调制过程的差异,将其规整为单像素光谱成像、编码孔径光谱成像、空间-光谱双重编码光谱成像、微阵列型光谱成像与散射介质光谱成像等几类。重点阐述了多种系统架构的信息调制与采集原理,以及对光谱图像数据立方体的调制效应,并讨论了其中的共性问题。最后给出了面临的技术挑战,探讨了未来发展趋势。
Abstract:Different from the traditional point-to-point mapping imaging method, computational optical imaging combines the physical regulation of the front-end optical signal with the processing of the back-end digital signal to make the image information acquisition more efficient. This new imaging mechanism is expected to alleviate the contradiction between low manufacturing cost and high performance indicators under the framework of traditional imaging technology, especially in the acquisition of high-dimensional image information. Since the system architecture supported by physical devices is the cornerstone of computational optical imaging, aiming at the sub-technical field of compressive spectral imaging, in this paper, we introduce the existing optical devices that can realize spatial or spectral modulation. Based on this, the architecture of multi-type compressive spectral imaging system is sorted out and summarized, which can be categorized as single-pixel spectral imaging, coded aperture spectral imaging, spatial-spectral dual-coded spectral imaging, microarray spectral imaging and scattering medium spectral imaging, based on the information modulation process. We focus on the information modulation and acquisition principles of various system architectures and their modulation effects on the spatial-spectral data cube, and then analyze and explore the common issues. Finally, the technical challenges faced are given, and the future development trend is discussed.
-
1. 引 言
三维面形测量系统具有非接触、高精度、快速、自动化等优点,广泛应用于机械零件的在线质量检测、服装制作、医学诊断等领域[1-6],已在国内外取得了较多的研究成果[7-13]。但在测量过程中,CCD非线性效应会导致频谱混叠,从而影响三维面形的测量精度,在这方面不少学者开展了大量研究[14-19]。如杜永兆等[6]分析了CCD非线性效应导致频谱混叠的原因,提出了消除频谱混叠的方法。于杰[7]提出了一种用于相移点衍射干涉仪的加权最小二乘相位提取算法,完全避免了CCD的二阶响应非线性。苏轲等[8]采用最佳的加权滤波窗口减弱了CCD非线性引起的频谱混叠对测量的影响。
双频光栅投影的复杂物体三维面形测量应用广泛,研究意义重大[9-12]。如FU Y等[9]采用计算机编制双频光栅程序投射到测量对象上,经拼接得到目标图像,设计滤波器对高频和低频进行滤波,在低频相位差的基础上,计算出高频相位差,实现了三维轮廓测量。武迎春等[10]提出了一种包含两个调制频率的复合光栅投影方法,利用低频指导高频进行相位展开提高解相精度,降低了相邻载波通道中交流分量之间的傅立叶频谱重叠度。PENG K等[11]提出将双频光栅用于在线三维测量,在相位计算中避免了滤波过程中的有效信息损失,将被测物体的整个调制方式与像素匹配,提高了三维重建精度。ERYI H等[12]通过获取两幅图像中物体表面同一点对应的图像强度,采用双频技术提取出无相位模糊的真实相位,对大台阶试样的表面形貌进行了测量,取得了较好的实验效果。
由于是用等效波长来衡量三维面形测量精度的[1],为了减小双频光栅三维测量中由于CCD非线性效应导致频谱混叠而影响测量精度,本文通过增大双频光栅的频率。
针对CCD非线性效应对双频光栅三维测量的影响,本文分析了CCD非线性效应产生频谱混叠的原因,讨论了CCD非线性效应下的双频光栅测量原理,对双频光栅投影输出的变形条纹进行了仿真与实际实验测量,仿真与实验结果得到的数据验证了所提方法的正确性与有效性。
2. 基本原理
2.1 CCD非线性效应对三维面形测量的影响
三维面形测量系统光路图如图1所示,
P1P2 是投影仪光轴,L0 是CCD光心I2 与参考平面之间的距离,d 是CCD光心I2 与投影仪光心P2 之间的距离,A和C是参考平面上的两点,D是物体表面上某点,h 是点D到参考平面间的距离。设
ϕ(x,y) 表示包含被测物体高度信息h(x,y) 的相位。对于图1所示的测量系统,当L0≫h(x,y) 时,h(x,y) 与ϕ(x,y) 之间的关系可简单地表示为[1]:h(x,y)=−L02πf0dϕ(x,y), (1) 式中
f0 为光栅基频。由式(1)可见,三维物体面形的高度信息
h(x,y) 可通过相位ϕ(x,y) 求出。在实际工作中,现在的CCD精度很高,CCD输出光强与输入光强之间存在的二阶与三阶非线性效应是影响测量精度的主要因素,其他的四阶和五阶等高阶非线性效应对测量精度的影响非常小,可以忽略不计。CCD输出的干涉条纹光强为:
g(x,y)=3∑λ=0{eλ[g0(x,y)]λ}, (2) 式中
g0(x,y) 为输入的归一化光强度条纹,g(x,y) 为实际捕获的归一化光强分布,eλ 为系数。对式(2)进行傅立叶变换可得频谱为:
G(fx,fy)=3∑λ=0Qλ(fx−λf0,fy−λf0)+3∑λ=0Q∗λ(fx+λf0,fy+λf0). (3) 由式(3)可见,当CCD存在着非线性效应时,频谱上多出了二倍频、三倍频等高级频谱成份。因此在相位恢复过程中,二级与三级等高级频谱分量可能会与包含物体高度信息的基频分量发生混叠,从而影响基频分量信息的提取,最终影响相位恢复及物体高度信息的三维测量。
2.2 CCD非线性效应影响下的双频光栅测量原理
复杂物体三维面形测量方法中,所采用的双频光栅测量集中了低频光栅和高频光栅各自的优点。投影低频光栅产生条纹得到的包裹相位为
φ1(x,y) ,其展开相位ϕ1(x,y) 相对容易展开,但精度较低。投影高频光栅产生条纹得到的包裹相位为φ2(x,y) ,其展开相位ϕ2(x,y) 相对较难展开,但精度较高。在CCD存在着二阶与三阶非线性效应情况下,投影双频光栅产生的变形条纹的光强分布为:
g′(x,y)=3∑λ=0aλ(x,y)+2∑k=13∑λ=0{ckλ(x,y)⋅exp[i2πλfkλ(x+y)]+c∗kλ(x,y)⋅exp[−i2πλfkλ(x+y)]}, (4) 式中
3∑λ=0aλ(x,y) 为背景光强,ckλ(x,y)=0.5bkλ(x,y) exp[iλϕkλ(x,y)] ,∗ 表示复数共轭,bkλ(x,y) 表示条纹模式中调制幅度相关的光强度,ϕkλ(x,y) 表示包含物体高度信息的相位,fkλ(x,y) 表示光栅的频率。对式(4)进行傅立叶变换可得频谱为:
G′(fx,fy)=3∑λ=0Aλ(fx,fy)+2∑k=13∑λ=0[Qkλ(fx−λfk,fy−λfk)+Q∗kλ(fx+λfk,fy+λfk)], (5) 式(5)中当
k=1 时,fk 表示低频光栅的基频,当k=2 时,表示高频光栅的基频(以下同),背景光强产生的系列频谱3∑λ=0Aλ(fx,fy) 能够通过π 相移技术消除[13], 其中Qkλ(fx−λfk,fy−λfk) 和Q∗kλ(fx+λfk, fy+λfk) 分别是ckλ(x,y)exp[i2πλfk(x+y) 和c∗kλ(x,y) exp[−i2πλfk(x+y) 经过傅立叶变换后得到的系列频谱。由式(5)可见,投影双频光栅产生的变形条纹经傅立叶变换后,频谱中除了产生基频外,还会产生二阶、三阶等高阶非线性引起的高级频谱成份,这些高级频谱成份可能会与基频发生混叠,从而影响基频中包含物体高度信息的提取,使测量精度降低。
由于CCD非线性效应导致双频光栅测量中基频与高级频谱发生混叠,减小混叠使各级频谱相互分离可以提高测量精度。测量精度是由等效波长来衡量的,等效波长由
L0/d 与fk 来决定[1]。它们之间有以下关系:|∂h(x,y)∂ϕ(x,y)|=L02πfkd=L0/d2πfk, (6) 式中
L0/d 与fk 的比值越小则测量精度越大,而降低L0/d 会影响测量范围[1]。因而,在理想情况下保持L0/d 不变,在保证CCD分辨率的前提下,通过增大光栅的基频fk 来增大测量精度,测量精度增大了也就意味着基频与高级频谱间的混叠减小了,这样也就减小或消除了CCD的非线性效应。根据式(1),在使用双频光栅投影测量三维物体面形时,对于高度为
h(x,y) 的物体上的某点,可得到如下关系:h(x,y)=−L02πf1dϕ1(x,y)=−L02πf2dϕ2(x,y). (7) 由式(7)可得
mf=ϕ2(x,y)ϕ1(x,y)=f2f1. (8) 由于只考虑了来自低频光栅与高频光栅的基频。选择适合的双频光栅基频
f1 和f2 ,采用低通滤波器对消除了频谱混叠的式(5)中的频谱进行滤波,滤出双频光栅产生的基频成份Q11(fx−f1, fy−f1) 和Q21(fx−f2,fy−f2) ,可得到展开相位ϕ1(x,y) 与ϕ2(x,y) 。展开相位ϕk(x,y) 与包裹相位φk(x,y) 之间的关系为:ϕk(x,y)=φk(x,y)+2πnk(x,y)k=1,2, (9) 式中
n1(x,y) 和n2(x,y) 分别为低频光栅和高频光栅产生的条纹整数级数。对于物体的同一点,存在如下关系:n2(x,y)n1(x,y)=f2f1. (10) 联合式(7)~式(10)可得
n2(x,y)=(INT){mfn1(x,y)+12π[mfϕ1(x,y)−ϕ2(x,y)]}, (11) 式中
(INT){⋅} 表示整数运算符,可以准确地确定与较高频率相关的展开相位ϕ2(x,y) 。可见,
n2(x,y) 能够由mf 、n1(x,y) 、φ1(x,y) 及φ2(x,y) 确定,代入式(9)可得到ϕ2(x,y) ,最后可由式(7)得到包含物体高度信息的三维物体面形。3. 计算机仿真及实验结果分析
为了验证基本原理分析的正确性,现用计算机仿真与实验进行验证。
3.1 计算机仿真结果及分析
设测量系统的几何参数为
L0/d=4 ,低频光栅的频率为f1=1/27mm−1 ,高频光栅的频率为f2= 1/9mm−1 ,则mf=3 模拟物体如图2(a)所示,大小为512pixel×512pixel 。设CCD为线性且存在着非线性效应,投影双频光栅产生的变形条纹光强分布为:g1(x,y)=g(x,y) 、g2(x,y)=0.18+1.32g(x,y)− 0.42g2(x,y) 。两种情况下的变形条纹光强经傅立叶变换后得到的沿着x轴方向的频谱分布分别如图2(b)、2(c)所示。可见,图2(b)中只有低频光栅与高频光栅各自产生的基频,而图2(c)中因CCD的非线性效应的存在,还含有低频光栅与高频光栅各自产生的高阶频谱成份,且与基频等频谱发生了混叠。
设测量系统的几何参数为
L0/d=2.25 ,低频光栅与高频光栅的基频分别为f1=1/32mm−1 、f2= 1/8mm−1 ,来自理想CCD系统的变形条纹光强为g(x,y)=0.5+0.5[cos(2πf1x+φ(x,y))+cos(2πf2x+φ (x,y))] ,来自存在非线性效应系统输出的变形条纹光强为g1(x,y)=0.15−0.13g(x,y)+2.34g2(x,y) 。模拟物体如图3(a)所示,其高度的最大绝对值与平均绝对值分别为24.3181 mm和1.0839 mm;通过双频光栅后的变形条纹光强如图3(b)所示;变形条纹光强经傅立叶变换后得到的沿着x轴方向频谱如图3(d)所示;恢复物体面形后的绝对高度差如图3(f)所示,测量值与实际值之间的最大绝对高度误差与平均绝对高度误差分别为0.8950 mm和0.0622 mm。
保持系统的测量参数不变,使低频光栅与高频光栅的基频分别增加为
f1=1/16mm−1 、f2= 1/4mm−1 ,模拟物体通过双频光栅后的变形条纹、变形条纹光强经傅立叶变换后得到沿着x轴方向的频谱及绝对高度差分别如图3(c)、3(e)、3(g)所示,测量值与实际值之间的最大绝对高度误差与平均绝对高度误差分别为0.3710 mm和0.0232 mm。比较图3(d)与3(e)可见,增大双频光栅各自的基频,可以使双频光栅各自产生的基频较好地分离,同时使同一光栅产生的基频与高级频谱较好地分离。比较图3(f)与3(g)可见,增大双频光栅各自的基频,可以明显提高三维物体的测量精度。
3.2 实验结果及分析
为了进一步证明基本原理分析的正确性,采用如图4所示的实验装置进行实验。通过MATLAB软件编写程序得到低频光栅与高频光栅的基频分别为
f1=1/40mm−1 、f2=1/10mm−1 ,则其频率比为mf=4 。再由式(4)得到双频光栅的变形条纹光强,投影双频光栅条纹到被测物体表面。系统为非线性时,在满足抽样条件下,投影双频光栅条纹到被测物体上产生的变形条纹如图5(a)所示,变形条纹经傅立叶变换后所得到的频谱如图5(c)所示,恢复的三维物体面形如图5(e)所示。再根据实验结果,由MATLAB软件编写程序,得到提升的低频光栅与高频光栅的基频分别为
f′1=1/16mm−1 、f′2=1/4mm−1 ,因而使低频光栅与高频光栅的基频都同等增加了2.5倍,此时得到新的双频光栅变形条纹、变形条纹经傅立叶变换后的频谱、恢复的三维物体面形分别如图5(b)、5(d)、5(f)所示。比较图5(c)与5(d)可见,两个图的频谱中除了低频光栅与高频光栅各自的包含物体高度信息的基频成份外,还有由各自产生的二阶、三阶等高阶非线性引起的高级频谱成份,两图中的基频都与各自的二级、三级等高级频谱成份混叠了。但是图5(c)的基频与二级、三级等高级频谱间混叠较多,而图5(d)的基频与各高级频谱间分离较好且混叠很少。
比较图5(e)与5(f)可见,图5(f)的恢复效果明显比图5(e)的效果好很多。图5(f)的额头、下巴、鼻子、脸颊等轮廓表面都比图5(e)的清晰且平滑,图5(e)的额头恢复效果较差,明显多出一道沟壑。
4. 结 论
为了减小CCD非线性效应对复杂光学三维面形测量精度的影响,提出了采用双频光栅投影消除CCD非线性效应并提高测量精度的方法。分析了CCD非线性效应及高级频谱成份产生的基本原因,讨论了CCD非线性效应下的双频光栅测量原理,并给出了理论分析和解析推导。仿真物体最大绝对值与平均绝对值分别为24.3181 mm和1.0839 mm,得到最大绝对高度误差与平均绝对高度误差分别为0.8950 mm和0.0622 mm,双频光栅基频都提高后,两个值分别减小为0.3710 mm和0.0232 mm。在实验结果中,当双频光栅的基频都同等增加2.5倍后,频谱中的基频与高级频谱间分离较好,测量精度明显提高。
-
图 2 单像素光谱成像系统架构及相应的空间-光谱数据立方体调制过程:(a) 基于光谱仪的单像素光谱成像仪;(b) 空间-光谱调制单像素光谱成像仪;(c) 光谱分离单像素光谱成像仪;(d) 空间-光谱调制光谱成像仪
Figure 2. Single pixel spectral imaging system architecture and its corresponding spatial-spectral data cube modulation diagram. (a) Spectrometer-based single pixel spectral imager; (b) spatial-spectral modulation single-pixel spectral imager; (c) spectral unmixing single pixel spectral imager; (d) spatial-spectral modulation spectral imager
图 10 微阵列型光谱成像架构:(a) 左上为紧凑型超光谱成像仪,左中为陷波滤波器阵列光谱成像仪,左下为基于FPRA阵列的光谱成像仪;(b) 像素级FPRA阵列光谱成像仪
Figure 10. Architecture of microarray spectral imaging. (a) Top left is the MUSI,middle left is the notch filter array spectral imager, bottom left is FPRA-based spectral imager;(b) pixel-level FPRA-based spectral imager
表 1 各系统型式特征总结
Table 1. Summary of the characteristics of each system type
系统型式类别 系统名称 调制方式 物理器件 对应图表 单像素光谱成像 基于光谱仪的单像素光谱成像仪[6-11] 空间调制,光谱分离 DMD,色散元件 图2(a) 空间-光谱调制单像素光谱成像仪[12] 空间调制,光谱调制 DMD,衍射光栅,正弦调制转轮 图2(b) 光谱分离单像素光谱成像仪[13-14] 光谱分离,空间调制 光谱分离器,SLM 图2(c) 空间-光谱调制光谱成像仪[15] 空间调制,光谱调制 SLM+色散棱镜+DMD+柱状透镜 图2(d) 编码孔径光谱成像(基本型式) SD-CASSI [16-18] 空间调制,光谱剪切 光刻掩模板+色散棱镜 图3(a) DD-CASSI [19] 光谱剪切,空间调制,光谱逆剪切 色散棱镜+光刻掩模板+色散棱镜 图3(b) 编码孔径光谱成像(CCA型式) C-CASSI [23-30] 空间-光谱调制,光谱剪切 光谱滤波阵列+色散棱镜 图4(a) CSPSI [31-34] 光谱剪切,空间-光谱调制 色散棱镜+光谱滤波阵列 图4(b) DM-based CSPSI [36] 空间复用,空间-光谱调制 DM+光谱滤波阵列 图4(c) 编码孔径光谱成像(光谱分割型式) LCTF光谱分割型[37-38] 光谱分离,空间调制 LCTF+DMD 图5左上 LeSTI [39] LED+DMD 图5左下 编码孔径光谱成像(编码可调整型式) CAASI [40-44] 空间调制(时变),光谱剪切 DMD(时变)/压电陶瓷,色散棱镜 / CSPSI [45] 光谱剪切(时变),空间-光谱调制 色散棱镜(旋转),光谱滤波阵列 图6 编码孔径光谱成像(多帧互补采集型式) Dual-camera CASSI [46,47] 通道1:空间调制,光谱剪切
通道2:空间-光谱调制(彩色相机)分束镜,光刻掩膜板,色散棱镜 图7(a) 0th and 1st order diffraction CASSI [48-50] 通道1(1st衍射光):空间调制,光谱剪切;
通道2 (0th 衍射光):无调制
(全色相机)DMD,衍射光栅 图7(b) 编码孔径光谱成像(多帧阵列采集型式) 图像倍增CASSI [52] 空间复制,空间调制,光谱剪切 图像倍增器,光刻掩模板,
色散棱镜图8(a) 透镜阵列CASSI [53] 空间复制,光谱剪切,空间调制,
光谱逆剪切透镜阵列,色散棱镜,光刻掩模板,色散棱镜 图8(b) 空间-光谱双重编码光谱成像 DCSI [55-57] 空间调制+光谱调制 DMD+衍射光栅+LCoS 图9(a) SSCSI [58-61] 空间光谱混合调制 衍射光栅+光刻掩模板 图9(b) 微阵列型光谱成像 MUSI[62-64] 光谱调制(时间延展) LCC 图10(a)左上 陷波滤波器阵列光谱成像仪[65] 空间复制,光谱调制 陷波滤波器阵列,透镜阵列 图10(a)左中 FPRA阵列光谱成像仪[66] 空间复制,光谱调制 FPRA,透镜阵列 图10(a)左下 像素级FPRA阵列光谱成像仪[66] 空间-光谱调制(像素级) FPRA 图10(b) 散射介质光谱成像 散射介质光谱成像仪[67-72] 空间-光谱复用调制 散射介质/DFA 图11 -
[1] 于磊. 成像光谱仪的发展与应用(特邀)[J]. 红外与激光工程,2022,51(1):20210940.YU L. Development and application of imaging spectrometer (Invited)[J]. Infrared and Laser Engineering, 2022, 51(1): 20210940. (in Chinese) [2] DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4): 1289-1306. doi: 10.1109/TIT.2006.871582 [3] CANDES E J, ROMBERG J, TAO T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information[J]. IEEE Transactions on Information Theory, 2006, 52(2): 489-509. doi: 10.1109/TIT.2005.862083 [4] CANDES E J, WAKIN M B. An introduction to compressive sampling[J]. IEEE Signal Processing Magazine, 2008, 25(2): 21-30. doi: 10.1109/MSP.2007.914731 [5] YUAN X, BRADY D J, KATSAGGELOS A K. Snapshot compressive imaging: theory, algorithms, and applications[J]. IEEE Signal Processing Magazine, 2021, 38(2): 65-88. doi: 10.1109/MSP.2020.3023869 [6] SUN T, KELLY K. Compressive sensing hyperspectral imager[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2009: CTuA5. [7] LI CH B, SUN T, KELLY K F, et al. A compressive sensing and unmixing scheme for hyperspectral data processing[J]. IEEE Transactions on Image Processing, 2012, 21(3): 1200-1210. doi: 10.1109/TIP.2011.2167626 [8] MAGALHAES F, ARAÚJO F M, CORREIA M, et al. High-resolution hyperspectral single-pixel imaging system based on compressive sensing[J]. Optical Engineering, 2012, 51(7): 071406. doi: 10.1117/1.OE.51.7.071406 [9] CHENNING T, HUANZHENG Z, XUCHENG W, et al. Compressive single-pixel hyperspectral imaging using RGB sensors[J]. Optics Express, 2021, 29(7): 11207-11220. doi: 10.1364/OE.416388 [10] KRAVETS V, KONDRASHOV P, STERN A. Compressive ultraspectral imaging using multiscale structured illumination[J]. Applied Optics, 2019, 58(22): F32-F39. doi: 10.1364/AO.58.000F32 [11] GARCIA H, CORREA C V, ARGUELLO H. Optimized sensing matrix for single pixel multi-resolution compressive spectral imaging[J]. IEEE Transactions on Image Processing, 2020, 29: 4243-4253. doi: 10.1109/TIP.2020.2971150 [12] BIAN L H, SUO J L, SITU G H, et al. Multispectral imaging using a single bucket detector[J]. Scientific Reports, 2016, 6: 24752. doi: 10.1038/srep24752 [13] STARLING D J, STORER I, HOWLAND G A. Compressive sensing spectroscopy with a single pixel camera[J]. Applied Optics, 2016, 55(19): 5198-5202. doi: 10.1364/AO.55.005198 [14] LI Z W, SUO J L, HU X M, et al. Efficient single-pixel multispectral imaging via non-mechanical spatio-spectral modulation[J]. Scientific Reports, 2017, 7: 41435. doi: 10.1038/srep41435 [15] MARTÍN G, BIOUCAS-DIAS J M. Spatial-spectral hyperspectral image compressive sensing[C]. Proceedings of 2017 IEEE International Geoscience and Remote Sensing Symposium, IEEE, 2017: 3988-3991. [16] WAGADARIKAR A, JOHN R, WILLETT R, et al. Single disperser design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2008, 47(10): B44-B51. doi: 10.1364/AO.47.000B44 [17] CAO X, YUE T, LIN X, et al. Computational snapshot multispectral cameras: toward dynamic capture of the spectral world[J]. IEEE Signal Processing Magazine, 2016, 33(5): 95-108. doi: 10.1109/MSP.2016.2582378 [18] HE J J, WU J M, LU ZH, et al. . Compressive hyperspectral imaging for snapshot multi-channel fluorescence microscopy[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2018: CW2E. 5. [19] GEHM M E, JOHN R, BRADY D J, et al. Single-shot compressive spectral imaging with a dual-disperser architecture[J]. Optics Express, 2007, 15(21): 14013-14027. doi: 10.1364/OE.15.014013 [20] ZHAO ZH X, MENG Z Y, JU ZH Y, et al. . A compact dual-dispersion architecture for snapshot compressive spectral imaging[C]. Proceedings of 2021 Asia Communications and Photonics Conference, IEEE, 2021: 1-3. [21] RUEDA C H F, CALDERÓN G A R, FUENTES H A. Spectral selectivity in compressive spectral imaging based on grayscale coded apertures[C]. Proceedings of Symposium of Signals, Images and Artificial Vision, IEEE, 2013: 1-5. [22] DIAZ N, RUEDA H, ARGUELLO H. High-dynamic range compressive spectral imaging by adaptive filtering[C]. Proceedings of the 2015 3rd International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing, IEEE, 2015: 89-93. [23] RUEDA H, ARGUELLO H, ARCE G R. Experimental demonstration of a colored coded aperture-based compressive spectral imaging system[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2014: CTu2C. 6. [24] ARGUELLO H, ARCE G R. Colored coded aperture design by concentration of measure in compressive spectral imaging[J]. IEEE Transactions on Image Processing, 2014, 23(4): 1896-1908. doi: 10.1109/TIP.2014.2310125 [25] RUEDA H, ARGUELLO H, ARCE G R. Compressive spectral imaging based on colored coded apertures[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2014: 7799-7803. [26] RUEDA H, ARGUELLO H, ARCE G R. DMD-based implementation of patterned optical filter arrays for compressive spectral imaging[J]. Journal of the Optical Society of America A, 2015, 32(1): 80-89. doi: 10.1364/JOSAA.32.000080 [27] RUEDA H, ARGUELLO H, ARCE G R. Colored coded aperture compressive spectral imaging: design and experimentation[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 601-604. [28] RUEDA H, ARGUELLO H, ARCE G R. Compressive spectral testbed imaging system based on thin-film color-patterned filter arrays[J]. Applied Optics, 2016, 55(33): 9584-9593. doi: 10.1364/AO.55.009584 [29] GALVIS L, MOJICA E, ARGUELLO H, et al. Shifting colored coded aperture design for spectral imaging[J]. Applied Optics, 2019, 58(7): B28-B38. doi: 10.1364/AO.58.000B28 [30] PARADA-MAYORGA A, ARCE G R. Spectral super-resolution in colored coded aperture spectral imaging[J]. IEEE Transactions on Computational Imaging, 2016, 2(4): 440-455. doi: 10.1109/TCI.2016.2612943 [31] RUEDA H, LAU D, ARCE G R. RGB detectors on compressive snapshot multi-spectral imagers[C]. Proceedings of 2015 IEEE Global Conference on Signal and Information Processing, IEEE, 2015: 388-392. [32] CORREA C V, ARGUELLO H, ARCE G R. Compressive spectral imaging with colored-patterned detectors[C]. Proceedings of 2014 IEEE International Conference on Acoustics, Speech and Signal Processing, IEEE, 2014: 7789-7793. [33] CORREA C V, ARGUELLO H, ARCE G R. Snapshot colored compressive spectral imager[J]. Journal of the Optical Society of America A, 2015, 32(10): 1754-1763. doi: 10.1364/JOSAA.32.001754 [34] MEJÍA-MELGAREJO Y H, VILLARREAL-DULCEY O P, ARGUELLO-FUENTES H. Adjustable spatial resolution of compressive spectral images sensed by multispectral filter array-based sensors[J]. Revista Facultad de Ingeniería, 2016(78): 89-98. [35] MARQUEZ M, MEZA P, ARGUELLO H, et al. Compressive spectral imaging via deformable mirror and colored-mosaic detector[J]. Optics Express, 2019, 27(13): 17795-17808. doi: 10.1364/OE.27.017795 [36] MONAKHOVA K, YANNY K, WALLER L. Snapshot hyperspectral imaging using a random phase mask and spectral filter array[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2020: JF2F. 4. [37] WANG X, ZHANG Y H, MA X, et al. Compressive spectral imaging system based on liquid crystal tunable filter[J]. Optics Express, 2018, 26(19): 25226-25243. doi: 10.1364/OE.26.025226 [38] XU C, XU T F, YAN G, et al. Super-resolution compressive spectral imaging via two-tone adaptive coding[J]. Photonics Research, 2020, 8(3): 395-411. doi: 10.1364/PRJ.377665 [39] MA X, YUAN X, FU CH, et al. LED-based compressive spectral-temporal imaging[J]. Optics Express, 2021, 29(7): 10698-10715. doi: 10.1364/OE.419888 [40] ARCE G R, BRADY D J, CARIN L, et al. Compressive coded aperture spectral imaging: an introduction[J]. IEEE Signal Processing Magazine, 2014, 31(1): 105-115. doi: 10.1109/MSP.2013.2278763 [41] KITTLE D, CHOI K, WAGADARIKAR A, et al. Multiframe image estimation for coded aperture snapshot spectral imagers[J]. Applied Optics, 2010, 49(36): 6824-6833. doi: 10.1364/AO.49.006824 [42] ARGUELLO H, ARCE G R. Code aperture optimization for spectrally agile compressive imaging[J]. Journal of the Optical Society of America A, 2011, 28(11): 2400-2413. doi: 10.1364/JOSAA.28.002400 [43] KITTLE D S, MARKS D L, BRADY D J. Design and fabrication of an ultraviolet-visible coded aperture snapshot spectral imager[J]. Optical Engineering, 2012, 51(7): 071403. doi: 10.1117/1.OE.51.7.071403 [44] WU Y H, MIRZA I O, ARCE G R, et al. Development of a digital-micromirror-device-based multishot snapshot spectral imaging system[J]. Optics Letters, 2011, 36(14): 2692-2694. doi: 10.1364/OL.36.002692 [45] CORREA C V, HINOJOSA C A A, ARCE G R, et al. Multiple snapshot colored compressive spectral imager[J]. Optical Engineering, 2017, 56(4): 041309. [46] WANG L ZH, XIONG ZH W, GAO H H, et al. Dual-camera design for coded aperture snapshot spectral imaging[J]. Applied Optics, 2015, 54(4): 848-858. doi: 10.1364/AO.54.000848 [47] WANG L ZH, XIONG ZH W, SHI G M, et al. . Compressive hyperspectral imaging with complementary RGB measurements[C]. Proceedings of 2016 Visual Communications and Image Processing, IEEE, 2016: 1-4. [48] ŽÍDEK K, DENK O, HLUBUČEK J, et al. Compact and robust hyperspectral camera based on compressed sensing[J]. Proceedings of the SPIE, 2016, 10151: 101510N. [49] HLUBUČEK J, LUKEŠ J, VÁCLAVÍK J, et al. Enhancement of CASSI by a zero-order image employing a single detector[J]. Applied Optics, 2021, 60(5): 1463-1469. doi: 10.1364/AO.414402 [50] SAITA Y, SHIMOYAMA D, TAKAHASHI R, et al. Single-shot compressive hyperspectral imaging with dispersed and undispersed light using a generally available grating[J]. Applied Optics, 2022, 61(5): 1106-1111. doi: 10.1364/AO.441568 [51] HLUBUČEK J, LUKEŠ J, VÁCLAVÍK J, et al. Differential coded aperture single-snapshot spectral imaging[J]. Optics Letters, 2022, 47(9): 2342-2345. doi: 10.1364/OL.454729 [52] JEON D S, CHOI I, KIM M H. Multisampling compressive video spectroscopy[J]. Computer Graphics Forum, 2016, 35(2): 467-477. doi: 10.1111/cgf.12847 [53] BLANCO G, PEREZ J, MONSALVE J, et al. . Single snapshot system for compressive covariance matrix estimation for hyperspectral imaging via lenslet array[C]. Proceedings of the 2021 XXIII Symposium on Image, Signal Processing and Artificial Vision, IEEE, 2021: 1-5. [54] MARQUEZ M, MONSALVE J, RUEDA H, et al. . Compressive spectral virtual multishot imager via lenslet array[C]. Proceedings of Optics and Photonics for Sensing the Environment, Optica Publishing Group, 2021: JW2A. 14. [55] AUGUST Y, VACHMAN C, RIVENSON Y, et al. . Compressive hyperspectral imaging by random separable projections in both the spatial and the spectral domains[J]. Applied Optics, 2013, 52(10): D46-D54. [56] STERN A, YITZHAK A, FARBER V, et al. . Hyperspectral compressive imaging[C]. Proceedings of the 2013 12th Workshop on Information Optics, IEEE, 2013: 1-3. [57] LIN X, WETZSTEIN G, LIU Y B, et al. Dual-coded compressive hyperspectral imaging[J]. Optics Letters, 2014, 39(7): 2044-2047. doi: 10.1364/OL.39.002044 [58] LIN X, LIU Y B, WU J M, et al. Spatial-spectral encoded compressive hyperspectral imaging[J]. ACM Transactions on Graphics, 2014, 33(6): 233. [59] WANG P, LI J, QI CH, et al. Input aperture restriction of the spatial spectral compressive spectral imager and a comprehensive solution for it[J]. Optics Express, 2021, 29(12): 17875-17889. doi: 10.1364/OE.422090 [60] SALAZAR E, PARADA A, ARCE G R. Spatial super-resolution reconstruction via SSCSI compressive spectral imagers[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2018: CTu5D. 5. [61] SALAZAR E, PARADA-MAYORGA A, ARCE G R. Spectral zooming and resolution limits of spatial spectral compressive spectral imagers[J]. IEEE Transactions on Computational Imaging, 2019, 5(2): 165-179. doi: 10.1109/TCI.2019.2893596 [62] STERN A, AUGUST I Y, OIKNINE Y. Compressive gigavoxel spectral imaging[C]. Proceedings of Computational Optical Sensing and Imaging, Optica Publishing Group, 2016: CW5D. 1. [63] OIKNINE Y, AUGUST I, STERN A. Along-track scanning using a liquid crystal compressive hyperspectral imager[J]. Optics Express, 2016, 24(8): 8446-8457. doi: 10.1364/OE.24.008446 [64] AUGUST I, OIKNINE Y, ABULEIL M, et al. Miniature compressive ultra-spectral imaging system utilizing a single liquid crystal phase retarder[J]. Scientific Reports, 2016, 6: 23524. doi: 10.1038/srep23524 [65] ZHANG M Q, WANG L ZH, ZHANG L, et al. High light efficiency snapshot spectral imaging via spatial multiplexing and spectral mixing[J]. Optics Express, 2020, 28(14): 19837-19850. doi: 10.1364/OE.393173 [66] OIKNINE Y, AUGUST I, STERN A. Multi-aperture snapshot compressive hyperspectral camera[J]. Optics Letters, 2018, 43(20): 5042-5045. doi: 10.1364/OL.43.005042 [67] GOLUB M A, AVERBUCH A, NATHAN M, et al. Compressed sensing snapshot spectral imaging by a regular digital camera with an added optical diffuser[J]. Applied Optics, 2016, 55(3): 432-443. doi: 10.1364/AO.55.000432 [68] HAUSER J, GOLUB M A, AVERBUCH A, et al. Dual-camera snapshot spectral imaging with a pupil-domain optical diffuser and compressed sensing algorithms[J]. Applied Optics, 2020, 59(4): 1058-1070. doi: 10.1364/AO.380256 [69] HAUSER J, AVERBUCH A, NATHAN M, et al. Design of binary-phase diffusers for a compressed sensing snapshot spectral imaging system with two cameras[J]. Applied Optics, 2020, 59(26): 7853-7864. doi: 10.1364/AO.395541 [70] SAHOO S K, TANG D L, DANG C. Single-shot multispectral imaging with a monochromatic camera[J]. Optica, 2017, 4(10): 1209-1213. doi: 10.1364/OPTICA.4.001209 [71] WANG P, MENON R. Ultra-high-sensitivity color imaging via a transparent diffractive-filter array and computational optics[J]. Optica, 2015, 2(11): 933-939. doi: 10.1364/OPTICA.2.000933 [72] WANG P, MENON R. Computational multispectral video imaging [Invited][J]. Journal of the Optical Society of America A, 2018, 35(1): 189-199. doi: 10.1364/JOSAA.35.000189 [73] DUARTE M F, BARANIUK R G. Kronecker compressive sensing[J]. IEEE Transactions on Image Processing, 2012, 21(2): 494-504. doi: 10.1109/TIP.2011.2165289 [74] CAIAFA C F, CICHOCKI A. Multidimensional compressed sensing and their applications[J]. WIREs Data Mining and Knowledge Discovery, 2013, 3(6): 355-380. doi: 10.1002/widm.1108 [75] LU Y, WONG T T W, CHEN F, et al. Compressed ultrafast spectral-temporal photography[J]. Physical Review Letters, 2019, 122(19): 193904. doi: 10.1103/PhysRevLett.122.193904 [76] YANG CH SH, CAO F Y, QI D L, et al. Hyperspectrally compressed ultrafast photography[J]. Physical Review Letters, 2020, 124(2): 023902. doi: 10.1103/PhysRevLett.124.023902 [77] PARK J, FENG X H, LIANG R G, et al. Snapshot multidimensional photography through active optical mapping[J]. Nature Communications, 2020, 11(1): 5602. doi: 10.1038/s41467-020-19418-0 期刊类型引用(4)
1. 乔闹生,尚雪. 抽样对三维形貌测量的影响(英文). 中国光学(中英文). 2024(06): 1512-1520 . 百度学术
2. 乔闹生,尚雪. 非线性系统中双频光栅相位测量(英文). 中国光学(中英文). 2023(03): 726-732 . 百度学术
3. 嵇晓强,刘振瑶,李炳霖,饶治,李贵文,粟立威. 面部视频非接触式生理参数感知. 中国光学. 2022(02): 276-285 . 百度学术
4. 刘飞,罗惠方,江翰立,张茵楠,严谨. 改进的三频三步相移结构光三维重建方法. 红外与激光工程. 2022(04): 304-312 . 百度学术
其他类型引用(2)
-