留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大口径光学望远镜拼接镜面关键技术综述

霍银龙 杨飞 王富国

霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文), 2022, 15(5): 973-982. doi: 10.37188/CO.2022-0109
引用本文: 霍银龙, 杨飞, 王富国. 大口径光学望远镜拼接镜面关键技术综述[J]. 中国光学(中英文), 2022, 15(5): 973-982. doi: 10.37188/CO.2022-0109
HUO Yin-long, YANG Fei, WANG Fu-guo. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. doi: 10.37188/CO.2022-0109
Citation: HUO Yin-long, YANG Fei, WANG Fu-guo. Overview of key technologies for segmented mirrors of large-aperture optical telescopes[J]. Chinese Optics, 2022, 15(5): 973-982. doi: 10.37188/CO.2022-0109

大口径光学望远镜拼接镜面关键技术综述

基金项目: 吉林省科技发展计划国际科技合作项目(No. 20210402065GH);中国科学院青年创新促进会优秀会员(No. Y202053);中国科学院国际伙伴计划(No. 181722KYSB20200001);国家自然科学基金(No. 11973040)
详细信息
    作者简介:

    霍银龙(1997—),男,河北石家庄人,博士研究生,2019年6月于华北理工大学获得学士学位,2019年至今,就读于中国科学院长春光学精密机械与物理研究所,主要从事大口径光学望远镜拼接镜面关键技术方面的研究。E-mail:huoylmail@163.com

    杨 飞(1982—) ,男,湖北天门人,博士,研究员,博士生导师,2003年于哈尔滨工业大学获得工学学士学位,2009年于中国科学院长春光学精密机械与物理研究所获得硕士学位,2017年于长春理工大学获得工学博士学位,主要从事大口径光学工程技术的光机系统研究。E-mail:yangflying@163.com

    王富国(1979—),男,山东单县人,博士,研究员,2003年于山东科技大学获得工学学士学位,2009年于中国科学院长春光学精密机械与物理研究所获得工学博士学位,主要研究方向为大型望远镜光机系统设计与仿真。E-mail:wfg109@163.com

  • 中图分类号: TH751

Overview of key technologies for segmented mirrors of large-aperture optical telescopes

Funds: Supported by the Jilin Science and Technology Development Program (No. 20210402065GH); Excellent Member of Youth Innovation Promotion Association CAS (No. Y202053); International Partnership Program of the Chinese Academy of Sciences (No. 181722KYSB20200001); National Natural Science Foundation of China (NSFC) (No. 11973040)
More Information
  • 摘要:

    随着天文探测的不断发展,望远镜的口径越来越大,拼接镜面技术为大口径望远镜主镜的设计提供了一种比单镜面形式更简单可行的替代方案,现已成为大口径望远镜主镜设计的重要途径。本文以詹姆斯·韦伯空间望远镜(JWST)和三十米望远镜(TMT)等典型拼接式望远镜的主镜设计为参考,总结了当前拼接镜面技术的发展现状;并阐述了在大规模子镜背景下,不同子镜拼接方案的性能差异,以及镜面支撑技术和共相检测技术的未来发展趋势,希望可以为我国下一代极大口径光学望远镜的自主研制提供参考。

     

  • 图 1  拼接子镜形状示意图

    Figure 1.  Schematic diagram of segmented sub-mirror shape

    图 2  子镜尺寸对光学系统MTF的影响[4]

    Figure 2.  Effect of sprite size on the MTF of optical systems[4]

    图 3  JWST的三维模型和主镜[12]

    Figure 3.  3D model of the JWST and its primary mirror[12]

    图 4  JWST拼接主镜方案[12]

    Figure 4.  The segmented primary mirror scheme of the JWST[12]

    图 5  TMT主镜和子镜形状[23]

    Figure 5.  Primary mirror and sub-mirror of TMT[23]

    图 6  TMT支撑系统示意图[23]

    Figure 6.  Schematic diagram of the TMT support system[23]

    图 7  平移误差以及倾斜误差示意图

    Figure 7.  Schematic diagram of the piston and tip/tilt error

    图 8  Piston 误差的 2π 模糊性[23]

    Figure 8.  2π ambiguity of the piston error[23]

    表  1  不同子镜形状差异

    Table  1.   Comparison of different sub-mirror shapes

    子镜形状拼接间隙对称性子镜种类制造难度
    六边形较小六重较大
    扇形一般较少
    圆形
    下载: 导出CSV

    表  2  大型拼接镜面望远镜基本参数

    Table  2.   Basic parameters of large segmented mirror telescopes



    时间
    选址名称主镜拼接子镜
    等效口径/m材料形状数量尺寸/m
    1993AmericanKeck Ⅰ10ZerodurHexagon361.8
    1996AmericanKeck Ⅱ10ZerodurHexagon361.8
    1997AmericanHET9.2ZerodurHexagon911.15
    2005South AfricaSALT9.5Glass-ceramicHexagon911.16
    2008SpainGTC10.4Glass-ceramicHexagon361.9
    2008ChinaLAMOST4ZerodurHexagon611.1
    2019JapanSeimei3.8ZerodurPetals181.2
    2021AmericanJWST6.5BeHexagon181.5
    AmericanGMT21E6Circular78.4
    AmericanTMT30ZerodurHexagon4921.44
    EuropeE-ELT39.3ZerodurHexagon7981.4
    ChinaLOT12ZerodurHexagon841.44
    下载: 导出CSV

    表  3  大型拼接望远镜支撑结构

    Table  3.   Large segmented mirror telescope support structures

    KeckHETSALTGTCLAMOSTTMTE-ELT
    支撑点数36-pt9-pt9-pt36-pt18-pt27-pt27-pt
    轴向支撑WhiffletreeWhiffletreeWhiffletreeWhiffletreeWhiffletreeWhiffletreeWhiffletree
    径向支撑中心膜片中心膜片中心膜片中心膜片中心膜片中心膜片中心膜片
    Warping Harness手动自动自动自动
    促动方式直接促动直接促动移动架直接促动直接促动移动架移动架
    下载: 导出CSV

    表  4  共相检测技术的性能对比

    Table  4.   Performance comparison of co-phasing detection technologies

    技术分类Piston
    检测
    Tip/Tlit
    检测
    光瞳
    对准
    粗/精
    共相

    模糊
    量程
    λ
    非共光
    路误差
    像平面PDYYNY±λ/2N
    PRYYNY±λ/2N
    光瞳面SHAPSYYY粗/精Y±λ/2Y
    PYYYYY±λ/4Y
    ZELDAYYN粗/精Y±λ/2Y
    DHS/DFSYNY粗/精N±λ/2Y
    PISTILYYNY3λY
    中间面DIPSIYYN粗/精Y±λ/2N
    CSYYNY±λ/8N
    下载: 导出CSV
  • [1] 张景旭. 地基大口径望远镜系统结构技术综述[J]. 中国光学,2012,5(4):327-336. doi: 10.3969/j.issn.2095-1531.2012.04.004

    ZHANG J X. Overview of structure technologies of large aperture ground-based telescopes[J]. Chinese Optics, 2012, 5(4): 327-336. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.04.004
    [2] KIM D, CHOI H, BRENDEL T, et al. Advances in optical engineering for future telescopes[J]. Opto-Electronic Advances, 2021, 4(6): 210040. doi: 10.29026/oea.2021.210040
    [3] 罗群. 相位差波前探测技术及其在拼接镜共相检测中的应用研究[D]. 长沙: 国防科技大学, 2012.

    LUO Q. Studies on the phase diversity wavefront sensor and Co-phasing measurement for segmented mirrors[D]. Changsha: National University of Defense Technology, 2012. (in Chinese)
    [4] 曹海峰. 大型光学红外望远镜拼接镜面主动光学技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2020.

    CAO H F. Research on the technologies of active optics for large aperture segmented optical/infrared telescope[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2020. (in Chinese)
    [5] 范文强, 王志臣, 陈宝刚, 等. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学,2020,13(6):1194-1208. doi: 10.37188/CO.2020-0032

    FAN W Q, WANG ZH CH, CHEN B G, et al. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. (in Chinese) doi: 10.37188/CO.2020-0032
    [6] 安其昌. 三十米望远镜三镜集成检测关键技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

    AN Q CH. Thirty meter telescope tertiary mirror alignment and metrology[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. (in Chinese)
    [7] 蔡峥, 张超, 樊凡. 天文望远镜的历史与展望——兼论清华宽视场巡天望远镜(MUST)[J]. 实验技术与管理,2021,38(5):1-9,37.

    CAI ZH, ZHANG CH, FAN F. History and prospect of astronomical telescopes: introducing Tsinghua multiplexed survey telescope (MUST)[J]. Experimental Technology and Management, 2021, 38(5): 1-9,37. (in Chinese)
    [8] 宋家宝, 李国平. 大型光学望远镜扇形子镜拼接设计及仿真分析[J]. 天文研究与技术,2010,7(4):355-361.

    SONG J B, LI G P. Design and simulation of splicing of sector-shaped segments of a large optical telescope[J]. Astronomical Research &Technology, 2010, 7(4): 355-361. (in Chinese)
    [9] 雷存栋. 大口径合成孔径望远镜拼接误差分析与控制技术研究[D]. 长春: 长春理工大学, 2016.

    LEI C D. Research on stitching errors analysis and control technology for large synthetic aperture telescope[D]. Changchun: Changchun University of Science and Technology, 2016. (in Chinese)
    [10] KENDRICK S E. Monolithic versus segmented primary mirror concepts for space telescopes[J]. Proceedings of SPIE, 2009, 7426: 74260O.
    [11] 李斌. 拼接镜共相检测技术研究[D]. 成都: 中国科学院光电技术研究所, 2017.

    LI B. The co-phasing detection of segmented mirror[D]. Chengdu: Institute of Optics and Electronics, Chinese Academy of Sciences, 2017. (in Chinese)
    [12] Mirrors Webb_NASA[EB/OL]. https://jwst.nasa.gov/content/observatory/ote/mirrors/index.html.
    [13] EGRON S, SOUMMER R, LAJOIE C P, et al. James Webb Space Telescope optical simulation testbed Ⅳ: linear control alignment of the primary segmented mirror[J]. Proceedings of SPIE, 2017, 10398: 1039811.
    [14] 邵亮, 杨飞, 王富国, 等. 1.2 m轻量化SiC主镜支撑系统优化设计[J]. 中国光学,2012,5(3):229-234. doi: 10.3969/j.issn.2095-1531.2012.03.006

    SHAO L, YANG F, WANG F G, et al. Design and optimization of supporting system for 1.2 m lightweight SiC primary mirror[J]. Chinese Optics, 2012, 5(3): 229-234. (in Chinese) doi: 10.3969/j.issn.2095-1531.2012.03.006
    [15] 赵宇, 苏成志, 赵贵军, 等. Φ500 mm超轻量化SiC反射镜结构优化设计[J]. 中国光学,2020,13(6):1352-1361. doi: 10.37188/CO.2019-0201

    ZHAO Y, SU CH ZH, ZHAO G J, et al. Structural optimization for the design of an ultra-lightweight SiC mirror with a diameter of 500 mm[J]. Chinese Optics, 2020, 13(6): 1352-1361. (in Chinese) doi: 10.37188/CO.2019-0201
    [16] 赵汝成, 包建勋. 大口径轻质SiC反射镜的研究与应用[J]. 中国光学,2014,7(4):552-558.

    ZHAO R CH, BAO J X. Investigation and application of large scale lightweight SiC mirror[J]. Chinese Optics, 2014, 7(4): 552-558. (in Chinese)
    [17] 郭疆. 碳化硅大口径空间反射镜设计与制造研究[D]. 长春: 吉林大学, 2019.

    GUO J. Research on design and manufacturing of large aperture space mirror of silicon carbide[D]. Changchun: Jilin University, 2019. (in Chinese)
    [18] 魏祥通. TMT三镜Whiffletree底支撑系统设计与测试方法研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    WEI X T. Design and test method study of TMT tertiary mirror whiffletree axial support system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, China, 2017. (in Chinese)
    [19] GUO P, ZHANG J, YANG F, et al. Geometric layout optimization of a large aperture thin elliptical mirror’s axial and lateral support[J]. Applied Optics, 2021, 60(10): 2861-2869. doi: 10.1364/AO.405638
    [20] 宋永锋. 12米红外光学望远镜子镜轴向及侧向支撑技术研究[D]. 武汉: 华中科技大学, 2019.

    SONG Y F. Research on techniques of axial and lateral supporting of 12-meter large optical-infrared telescope (LOT) segments[D]. Wuhan: Huazhong University of Science and Technology, 2019. (in Chinese)
    [21] YANG F, ZHANG X J, ZHAO H CH, et al. Relay optical function and pre-construction results of a Giant Steerable Science Mirror for a thirty meter telescope[J]. Optics Express, 2019, 27(10): 13991-14008. doi: 10.1364/OE.27.013991
    [22] BAFFES C, MAST T, NELSON J, et al. Primary mirror segmentation studies for the thirty meter telescope[J]. Proceedings of SPIE, 2008, 7018: 70180S. doi: 10.1117/12.790206
    [23] WILLIAMS E C, BAFFES C, MAST T, et al. Advancement of the segment support system for the thirty meter telescope primary mirror[J]. Proceedings of SPIE, 2008, 7018: 701810. doi: 10.1117/12.790176
    [24] 张龙, 王孝坤, 程强, 等. 拼接式望远镜主镜衍射效应研究[J]. 应用光学,2020,41(3):447-454. doi: 10.5768/JAO202041.0301003

    ZHANG L, WANG X K, CHENG Q, et al. Research on diffraction effect of primary mirror in segmented telescope[J]. Journal of Applied Optics, 2020, 41(3): 447-454. (in Chinese) doi: 10.5768/JAO202041.0301003
    [25] 廖周. 大口径分块望远镜主镜的误差分析与共相探测方法研究[D]. 成都: 电子科技大学, 2015.

    LIAO ZH. Error analysis of segmented primary mirror and research on co-phasing measurement[D]. Chengdu: University of Electronic Science and Technology of China, 2015. (in Chinese)
    [26] WANG Y R, JIANG F Y, JU G H, et al. Deep learning wavefront sensing for fine phasing of segmented mirrors[J]. Optics Express, 2021, 29(16): 25960-25978. doi: 10.1364/OE.434024
    [27] QIN SH, CHAN W K. A tip–tilt and piston detection approach for segmented telescopes[J]. Photonics, 2020, 8(1): 3. doi: 10.3390/photonics8010003
    [28] 林旭东, 陈涛, 王建立, 等. 拼接镜主动光学共焦实验[J]. 光学 精密工程,2010,18(3):563-569.

    LIN X D, CHEN T, WANG J L, et al. Co-focus experiment of segmented-mirror active optics[J]. Optics and Precision Engineering, 2010, 18(3): 563-569. (in Chinese)
    [29] ZHAO W R, ZHANG L, ZHAO Y J, et al. High-accuracy piston error measurement with a large capture range based on coherent diffraction[J]. Proceedings of SPIE, 2019, 11056: 110563B.
    [30] SHEN SH D, CUI X Q, ZHANG Y. Simulation and analysis of co-phasing errors of the segmented primary mirror tiled by hexagonal segments in LOT[J]. Research in Astronomy and Astrophysics, 2021, 21(10): 245. doi: 10.1088/1674-4527/21/10/245
    [31] JIANG J L, ZHAO W R. Phasing piston error in segmented telescopes[J]. Optics Express, 2016, 24(17): 19123-19137. doi: 10.1364/OE.24.019123
    [32] YANG L L, YANG D, YANG ZH M, et al. Co-phase state detection for segmented mirrors by dual-wavelength optical vortex phase-shifting interferometry[J]. Optics Express, 2022, 30(9): 14088-14102. doi: 10.1364/OE.455890
    [33] WANG P F, ZHAO H, XIE X P, et al. Multichannel left-subtract-right feature vector piston error detection method based on a convolutional neural network[J]. Optics Express, 2021, 29(14): 21320-21335. doi: 10.1364/OE.428690
    [34] JIN K H, MCCANN M T, FROUSTEY E, et al. Deep convolutional neural network for inverse problems in imaging[J]. IEEE Transactions on Image Processing, 2017, 26(9): 4509-4522. doi: 10.1109/TIP.2017.2713099
    [35] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. doi: 10.1007/s11263-015-0816-y
    [36] MA X F, XIE Z L, MA H T, et al. Piston sensing of sparse aperture systems with a single broadband image via deep learning[J]. Optics Express, 2019, 27(11): 16058-16070. doi: 10.1364/OE.27.016058
    [37] LI D Q, XU SH Y, WANG D, et al. Large-scale piston error detection technology for segmented optical mirrors via convolutional neural networks[J]. Optics Letters, 2019, 44(5): 1170-1173. doi: 10.1364/OL.44.001170
    [38] CAO H F, ZHANG J X, YANG F, et al. Extending capture range for piston error in segmented primary mirror telescopes based on wavelet support vector machine with improved particle swarm optimization[J]. IEEE Access, 2020, 8: 111585-111597. doi: 10.1109/ACCESS.2020.3002901
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  1760
  • HTML全文浏览量:  769
  • PDF下载量:  546
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-31
  • 修回日期:  2022-06-22
  • 网络出版日期:  2022-07-28

目录

    /

    返回文章
    返回