留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

全景双谱段红外成像干涉光谱测量反演仪器

吕金光 梁静秋 赵百轩 赵莹泽 郑凯丰 陈宇鹏 王维彪 秦余欣 陶金

吕金光, 梁静秋, 赵百轩, 赵莹泽, 郑凯丰, 陈宇鹏, 王维彪, 秦余欣, 陶金. 全景双谱段红外成像干涉光谱测量反演仪器[J]. 中国光学(中英文), 2022, 15(5): 1092-1104. doi: 10.37188/CO.2022-0114
引用本文: 吕金光, 梁静秋, 赵百轩, 赵莹泽, 郑凯丰, 陈宇鹏, 王维彪, 秦余欣, 陶金. 全景双谱段红外成像干涉光谱测量反演仪器[J]. 中国光学(中英文), 2022, 15(5): 1092-1104. doi: 10.37188/CO.2022-0114
LV Jin-guang, LIANG Jing-qiu, ZHAO Bai-xuan, ZHAO Ying-ze, ZHENG Kai-feng, CHEN Yu-peng, WANG Wei-biao, QIN Yu-xin, TAO Jin. Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument[J]. Chinese Optics, 2022, 15(5): 1092-1104. doi: 10.37188/CO.2022-0114
Citation: LV Jin-guang, LIANG Jing-qiu, ZHAO Bai-xuan, ZHAO Ying-ze, ZHENG Kai-feng, CHEN Yu-peng, WANG Wei-biao, QIN Yu-xin, TAO Jin. Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument[J]. Chinese Optics, 2022, 15(5): 1092-1104. doi: 10.37188/CO.2022-0114

全景双谱段红外成像干涉光谱测量反演仪器

doi: 10.37188/CO.2022-0114
基金项目: 国家自然科学基金(No. 61805239,No. 61627819,No. 61727818);中国科学院青年创新促进会基金(No. 2018254);吉林省科技发展计划(No. 20190303063SF,No. 20180201024GX,No. 20150520101JH)
详细信息
    作者简介:

    吕金光(1984—),男,吉林蛟河人,博士,副研究员,博士生导师,中国科学院青年创新促进会会员,2008年于吉林大学获得学士学位,2013年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事相干光谱成像与光学信息处理方面的研究。E-mail:jinguanglv@163.com

    梁静秋(1962—),女,吉林长春人,博士,研究员,博士生导师,1984年于吉林大学获得学士学位,2003年于中国科学院长春光学精密机械与物理研究所获得博士学位。主要从事微光机电系统、红外光谱技术及红外光学仪器方面的研究。E-mail:liangjq@ciomp.ac.cn

  • 中图分类号: O433.1

Panoramic bispectral infrared imaging interference spectrum measurement inversion instrument

Funds: Supported by National Natural Science Foundation of China (No. 61805239,No. 61627819,No. 61727818); Foundation of Youth Innovation Promotion Association of Chinese Academy of Sciences (No. 2018254); Science and Technology Development Project of Jilin Province (No. 20190303063SF,No. 20180201024GX,No. 20150520101JH)
More Information
  • 摘要:

    为了满足工业污染排放及突发安全事故对在线实时监测分析仪器的迫切需求,提出了全景双谱段红外成像干涉光谱测量反演仪器。通过双通道干涉系统、双谱段成像系统及方位俯仰轴系的协同设计,实现目标场景图像光谱信息的大视场、宽谱段、高分辨率测量。首先,根据傅立叶光学理论,建立了干涉成像光谱的标量衍射理论模型;然后,基于宽带采样与窄带采样理论,对双通道干涉系统进行采样设计,并在分析干涉成像特点的基础上,对双谱段成像系统进行光学设计;最后,研制了原理样机,并开展了烟囱排放气体烟羽的遥测实验。该仪器可以实现360°×60°大视场空间场景中3~5 μm和8~12 μm中长波红外光谱范围内4 cm−1分辨率的光谱测量,满足排放监测定性识别与定量分析的应用要求。

     

  • 图 1  全景双谱段红外成像干涉光谱测量反演仪器原理图

    Figure 1.  Schematic diagram of panoramic bispectral infrared imaging interference spectrum measurement inversion instrument

    图 2  多级微反射镜对像场的光程调制示意图

    Figure 2.  Schematic diagram of the image field modulation by multi micro mirror

    图 3  望远成像系统的光学设计图

    Figure 3.  Optical design drawing of the telescopic imaging system

    图 4  中波红外中继成像系统的光学设计图

    Figure 4.  Optical design drawing of MWIR relay imaging system

    图 5  长波红外中继成像系统的光学设计图

    Figure 5.  Optical design drawing of LWIR relay imaging system

    图 6  中波红外成像通道的光学设计图

    Figure 6.  Optical design of MWIR imaging channel

    图 7  长波红外成像通道的光学设计图

    Figure 7.  Optical design of LWIR imaging channel

    图 8  中波红外成像通道的调制传递函数

    Figure 8.  MTF of MWIR imaging channel

    图 9  长波红外成像通道的调制传递函数

    Figure 9.  MTF of LWIR imaging channel

    图 10  双通道干涉系统与双谱段成像系统的光路耦合

    Figure 10.  Optical path coupling between the dual channel interference system and the dual spectral imaging system

    图 11  全景双谱段红外成像干涉光谱测量反演仪器样机

    Figure 11.  Prototype of the infrared imaging interference spectrometer

    图 12  乙腈样品的测量透过率光谱

    Figure 12.  Measured transmittance spectra of acetonitrile

    图 13  氨气样品的测量透过率光谱

    Figure 13.  Measured transmittance spectra of ammonia

    图 14  波数标定后的滤光片透射光谱

    Figure 14.  Filter transmission spectrum by wavenumber calibration

    图 15  系统测量数字亮度谱

    Figure 15.  Digital number spectrum measured by system

    图 16  辐亮度标定系数

    Figure 16.  Radiance calibration coefficient

    图 17  辐亮度标定后的黑体辐射谱及平均残差比

    Figure 17.  Blackbody spectrum after radiance calibration and average residual ratio

    图 18  系统对于气体烟羽排放的遥测模型

    Figure 18.  Telemetry model of the system for gas plume emission

    图 19  红外全景图像

    Figure 19.  Infrared panoramic image

    图 20  热烟羽的气体浓度反演图像

    Figure 20.  Inversion image of gas concentration of gas plume

  • [1] 程久庚, 苏朝晖. 原子力-红外光谱定量分析聚1-丁烯/聚丙烯共混物的相区组成[J]. 应用化学,2022,39(2):266-271. doi: 10.19894/j.issn.1000-0518.210098

    CHENG J G, SU ZH H. Quantitative analysis of phase composition of poly (1-butene)/polypropylene blends by atomic force microscopy-infrared[J]. Chinese Journal of Applied Chemistry, 2022, 39(2): 266-271. (in Chinese) doi: 10.19894/j.issn.1000-0518.210098
    [2] 张春晖, 刘西京, 章蓉, 等. 蒙药荜茇不同提取物的红外光谱[J]. 应用化学,2021,38(3):271-275. doi: 10.19894/j.issn.1000-0518.200341

    ZHANG CH H, LIU X J, ZHANG R, et al. Infrared spectrum about the different extracts of fructus piperis longi[J]. Chinese Journal of Applied Chemistry, 2021, 38(3): 271-275. (in Chinese) doi: 10.19894/j.issn.1000-0518.200341
    [3] 张琳, 朱顺官, 冯红艳, 等. 基于干涉图解析的被动式遥感FTIR分析[J]. 应用化学,2009,26(4):467-470. doi: 10.3969/j.issn.1000-0518.2009.04.021

    ZHANG L, ZNU SH G, FENG H Y, et al. Interpretation of passive remote sensing FTIR spectra based on interferogram[J]. Chinese Journal of Applied Chemistry, 2009, 26(4): 467-470. (in Chinese) doi: 10.3969/j.issn.1000-0518.2009.04.021
    [4] 高健华, 梁静秋, 吕金光, 等. 基于多级微反射镜的时空联合调制傅里叶变换成像光谱仪: 原理及数据处理[J]. 光谱学与光谱分析,2017,37(12):3932-3939.

    GAO J H, LIANG J Q, LV J G, et al. A stepped mirror based temporally and spatially modulated imaging Fourier transform spectrometer: principle and data processing[J]. Spectroscopy and Spectral Analysis, 2017, 37(12): 3932-3939. (in Chinese)
    [5] 吕金光, 梁静秋, 梁中翥, 等. 基于多级微镜的傅里叶变换成像光谱仪干涉成像系统分析与设计[J]. 光谱学与光谱分析,2016,36(5):1554-1559.

    LV J G, LIANG J Q, LIANG ZH ZH, et al. Analysis and design of interference imaging system in Fourier transform imaging spectrometer based on multi-micro-mirror[J]. Spectroscopy and Spectral Analysis, 2016, 36(5): 1554-1559. (in Chinese)
    [6] 吕金光, 赵百轩, 梁静秋, 等. 像场调制傅里叶变换成像光谱仪的建模与实验研究[J]. 光学学报,2020,40(18):1811002. doi: 10.3788/AOS202040.1811002

    LV J G, ZHAO B X, LIANG J Q, et al. Modeling and experiment of image field modulated Fourier transform imaging spectrometer[J]. Acta Optica Sinica, 2020, 40(18): 1811002. (in Chinese) doi: 10.3788/AOS202040.1811002
    [7] 梁静秋, 梁中翥, 吕金光, 等. 空间调制微型傅里叶变换红外光谱仪研究[J]. 中国光学,2015,8(2):277-298. doi: 10.3788/co.20150802.0277

    LIANG J Q, LIANG ZH ZH, LV J G, et al. Micro spatial modulation Fourier transform infrared spectrometer[J]. Chinese Optics, 2015, 8(2): 277-298. (in Chinese) doi: 10.3788/co.20150802.0277
    [8] GAO J H, LIANG ZH ZH, LIANG J Q, et al. Spectrum reconstruction of a spatially modulated Fourier transform spectrometer based on stepped mirrors[J]. Applied Spectroscopy, 2017, 71(6): 1348-1356. doi: 10.1177/0003702816669729
    [9] LACAN A, BRÉON F M, ROSAK A, et al. A static Fourier transform spectrometer for atmospheric sounding: concept and experimental implementation[J]. Optics Express, 2010, 18(8): 8311-8331. doi: 10.1364/OE.18.008311
    [10] 朱军, 刘文清, 刘建国, 等. 基于光谱波段优化选择的FTIR测量与分析[J]. 光谱学与光谱分析,2007,27(4):679-682. doi: 10.3321/j.issn:1000-0593.2007.04.015

    ZHU J, LIU W Q, LIU J G, et al. FTIR measurement and analysis based on the selection of optimized spectral band[J]. Spectroscopy and Spectral Analysis, 2007, 27(4): 679-682. (in Chinese) doi: 10.3321/j.issn:1000-0593.2007.04.015
    [11] 戴铁, 郑有飞, 石广玉. 利用红外辐射光谱反演大气CO2浓度的理论研究[J]. 气象与环境科学,2008,31(1):1-5. doi: 10.3969/j.issn.1673-7148.2008.01.001

    DAI T, ZHENG Y F, SHI G Y. Theoretic study on the retrieval of atmospheric CO2 concentrations from infrared emitting spectrum[J]. Meteorological and Environmental Sciences, 2008, 31(1): 1-5. (in Chinese) doi: 10.3969/j.issn.1673-7148.2008.01.001
    [12] REN J, LV J G, ZHAO B X, et al. Optical design and investigation of a dual-interference channels and bispectrum static Fourier-transform imaging spectrometer based on stepped micro-mirror[J]. IEEE Access, 2021, 9: 81871-81881. doi: 10.1109/ACCESS.2021.3086217
    [13] ZHAO B X, LV J G, REN J, et al. Data processing and performance evaluation of a tempo-spatially mixed modulation imaging Fourier transform spectrometer based on stepped micro-mirror[J]. Optics Express, 2020, 28(5): 6320-6335. doi: 10.1364/OE.383401
    [14] 赵云, 吕金光, 秦余欣, 等. 微型傅立叶变换光谱仪的优化设计与实验研究[J]. 中国光学,2020,13(2):411-425. doi: 10.3788/co.20201302.0411

    ZHAO Y, LV J G, QIN Y X, et al. Optimization design and experimental study of micro-Fourier transform spectrometer[J]. Chinese Optics, 2020, 13(2): 411-425. (in Chinese) doi: 10.3788/co.20201302.0411
    [15] 安玲坪, 王爽, 张耿, 等. 大孔径静态干涉成像光谱仪径向畸变导致的谱线偏移误差的校正[J]. 中国光学,2021,14(2):382-389. doi: 10.37188/CO.2020-0084

    AN L P, WANG SH, ZHANG G, et al. Corrective method for spectral offset error caused by radial distortion in the large aperture static imaging spectrometer[J]. Chinese Optics, 2021, 14(2): 382-389. (in Chinese) doi: 10.37188/CO.2020-0084
    [16] GRIFFITH D W T, JAMIE I M. Fourier transform infrared spectrometry in atmospheric and trace gas analysis[M]//MEYERS R A. Encyclopedia of Analytical Chemistry: Applications, Theory and Instrumentation. New Jersey: John Wiley & Sons, Ltd. , 2006.
  • 加载中
图(20)
计量
  • 文章访问数:  42
  • HTML全文浏览量:  67
  • PDF下载量:  88
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-03
  • 修回日期:  2022-06-20
  • 网络出版日期:  2022-08-03

目录

    /

    返回文章
    返回