留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

六边形环带排布的共光路复眼光学系统设计

范晨 刘钧 高明 吕宏

范晨, 刘钧, 高明, 吕宏. 六边形环带排布的共光路复眼光学系统设计[J]. 中国光学(中英文), 2023, 16(1): 158-173. doi: 10.37188/CO.2022-0116
引用本文: 范晨, 刘钧, 高明, 吕宏. 六边形环带排布的共光路复眼光学系统设计[J]. 中国光学(中英文), 2023, 16(1): 158-173. doi: 10.37188/CO.2022-0116
FAN Chen, LIU Jun, GAO Ming, LV Hong. Design of compound eye optical system with hexagonal band arrangement and common optical path[J]. Chinese Optics, 2023, 16(1): 158-173. doi: 10.37188/CO.2022-0116
Citation: FAN Chen, LIU Jun, GAO Ming, LV Hong. Design of compound eye optical system with hexagonal band arrangement and common optical path[J]. Chinese Optics, 2023, 16(1): 158-173. doi: 10.37188/CO.2022-0116

六边形环带排布的共光路复眼光学系统设计

doi: 10.37188/CO.2022-0116
基金项目: 陕西省自然科学基础研究计划项目(No. 2019JM-470); 陕西省教育厅科研计划项目(No. 18JS048)
详细信息
    作者简介:

    范 晨(1996—),男,陕西西安人,硕士研究生,2020年于西安工业大学光电工程学院获得学士学位,主要研究方向为光学系统设计理论与应用。E-mail:272497924@qq.com

    刘 钧(1964—),女,辽宁葫芦岛人,教授,硕士研究生导师,2005年于南京理工大学获得硕士学位。研究方向包括:光学设计,光电仪器设计,光电检测技术等。E-mail:junliu1990@163.com

    高 明(1964—),男,吉林长春人,教授,博士研究生导师,院长。现任中国兵工学会光电子技术专业委员会委员、中国光学学会会员、国家科学技术奖评审专家,2010年于西安电子科技大学获得博士学位。研究技术领域包括:光电测试与光学仪器、光学设计、精密仪器及机械,激光大气传输理论及技术,光电对抗技术等。E-mail:minggao1964@163.com

    吕 宏(1975—),男,山西省河津人,副教授,硕士研究生导师,2012年于西安理工大学获得博士学位。研究方向包括:激光大气传输特性、光场调控以及测控技术等。E-mail:lvhong@xatu.edu.cn

  • 中图分类号: O439

Design of compound eye optical system with hexagonal band arrangement and common optical path

Funds: Supported by Natural Science Basic Research Plan Project of Shaanxi Province (No. 2019JM-470); Scientific Research Plan Project of Shaanxi Provincial Education Department (No. 18JS048)
More Information
    Corresponding author: junliu1990@163.com
  • 摘要:

    为解决仿生复眼系统目前普遍存在的空间利用率较低、子眼孔径较小问题,本文提出一种六边形环带排布的大孔径复眼系统设计方法,通过引入填充因子理论,以传统曲面圆周式排布为对照组,论证了六边形环带排布模型可有效提高大孔径复眼系统的空间利用率。针对单波段复眼系统获取目标信息量有限的问题,设计采用红外双波段共光路的成像结构形式,辅以红外双色探测器接收,增强了复眼系统获取目标信息的多维度能力,同时建立了六边形环带排布方式的子孔径定位数学模型。仿生复眼系统共由91个子孔径组成,子孔径入瞳为16 mm,焦距为48 mm,视场角为9°,子孔径合成总视场为96°×85°,中继转像系统焦距为6.14 mm,子眼系统和中继转像系统在−40 °C~+60 °C温度变化范围内无热差影响,探测器冷反射效应可忽略。对复眼系统进行组合,仿真结果表明:各个光学子通道均方根(RMS)半径均小于艾里斑,光学畸变值均小于0.1%,边缘子通道红外中波/长波波段调制传递函数(MTF)在17 lp/mm处均达到0.5以上。该系统结构紧凑、探测能力强,可用于复杂环境中多目标的探测与识别。

     

  • 图 1  六边形环带排布模型图

    Figure 1.  Hexagonal band arrangement model diagram

    图 2  主阵列子孔径投影示意图

    Figure 2.  Schematic diagram of main array direction sub aperture projection

    图 3  两种排布模型子孔径投影对比图

    Figure 3.  Sub aperture projection contrast of two arrangement models

    图 4  某主阵列子孔径排布剖面图

    Figure 4.  A sub aperture layout section view of a main array

    图 5  复眼$ OXYZ $坐标系模型图

    Figure 5.  Compound eye coordinate system model diagram

    图 6  子孔径平面角示意图

    Figure 6.  Schematic diagram of sub aperture plane angle

    图 7  子孔径光路结构示意图

    Figure 7.  Schematic diagram of sub aperture optical path structure

    图 8  子孔径系统光学传递函数曲线图

    Figure 8.  MTF of sub aperture system

    图 9  子孔径系统的RMS波前视场图

    Figure 9.  RMS wavefront view of a sub aperture system

    图 10  主阵列平面方向排布子孔径二维模型图

    Figure 10.  2D model diagram of sub-apertures arranged in the plane direction of the main array

    图 11  4层子孔径阵列三维模型图

    Figure 11.  3D model of 4-layer sub-aperture array

    图 12  中继转像系统光路图

    Figure 12.  Relay system optical path diagram

    图 13  中继转像系统光学传递函数曲线图

    Figure 13.  MTF of relay system

    图 14  中继转像系统的RMS波前视场图

    Figure 14.  RMS wavefront view of a relay system

    图 15  子孔径系统不同波段高低温下的MTF曲线

    Figure 15.  MTF of sub aperture system at different bands at high and low temperatures

    图 16  中继转像系统不同波段高低温下的MTF曲线

    Figure 16.  MTF of relay system at different bands at high and low temperatures

    图 17  中继系统部分表面反射光线反向追迹图

    Figure 17.  Reverse tracing diagram of reflected light on part surface of relay system

    图 18  中继系统各光学表面NITD贡献值

    Figure 18.  NITD contributions of optical surfaces of relay system

    图 19  复眼光学系统主阵列方向成像光路图

    Figure 19.  Imaging optical path diagram of the main array direction of the compound eye optical system

    图 20  复眼光学系统整体成像光路图

    Figure 20.  Overall imaging optical path diagram of compound eye optical system

    图 21  中心成像子通道的MTF曲线和点列图

    Figure 21.  MTF and spot diagram of central imaging sub channel

    图 22  边缘成像子通道的MTF曲线和点列图

    Figure 22.  MTF and spot diagram of margin imaging sub channel

    图 23  复眼系统边缘子通道的场曲和畸变图

    Figure 23.  Field curve and distortion plot of the margin sub channel of the compound eye system

    图 24  复眼组合系统中心和边缘子通道RMS视场波前图

    Figure 24.  RMS field of view wavefront diagram of center and edge sub-channels of compound eye combined system

    图 25  复眼系统300组MC公差分析结果

    Figure 25.  Results of 300 Monte Carlo tolerance analysis for compound eye system

    表  1  相邻子孔径重叠角与子孔径视场角关系

    Table  1.   Relationship between overlapping angle of adjacent sub aperture and FOV of sub aperture

    Angle relationshipConclusion
    β=0°The edge rays of adjacent sub-apertures are parallel, and there is a blind spot in the field of view at the object plane at finite distance
    0°<β<ωAdjacent sub-aperture edge rays intersect
    β=ωSub-aperture edge rays are parallel to adjacent sub-aperture optical axes
    β>ωAlternate sub-aperture edge rays overlap far away, and the intermediate sub-aperture field of view is meaningless
    下载: 导出CSV

    表  2  仿生复眼光学系统基本参数

    Table  2.   Basic parameters of bionic compound eye optical system

    TypeThe parameter value
    Main array direction FOV 2θ/(°)96
    sub-aperture FOV 2ω/(°)9.0
    The angle between the optical axes of
    adjacent sub-apertures Δφ/(°)
    8.7
    Base radius R/mm111
    Number of sub-apertures n91
    Number of sub-aperture array layers S6
    下载: 导出CSV

    表  3  六边形环带复眼系统总体设计指标

    Table  3.   Overall design index of compound eye system with hexagonal ring band

    TypeThe parameter value
    Detection distance/km1
    Target size/m2
    System diameter/mm<200
    Wavelength/μmMWIR: 3.7~4.8
    LWIR: 7.7~9.5
    下载: 导出CSV

    表  4  红外双色探测器主要参数

    Table  4.   Main parameters of infrared two-color detector

    TypeThe parameter value
    Resolution320×256
    cell size/μm30×30
    target size/mm12.29
    下载: 导出CSV

    表  5  子孔径光学系统设计参数

    Table  5.   Sub-aperture optical system design parameters

    MWIRLWIR
    Wavelength/μm3.7~4.87.7~9.5
    Focal length/mm4848
    F#33
    Field of view/(°)99
    下载: 导出CSV

    表  6  中继转像系统光学设计参数

    Table  6.   Optical system design parameters of relay system

    MWIRLWIR
    Wavelength/μm3.7~4.87.7~9.5
    Focal length/mm66
    Detector size/mm12.2912.29
    Field of view/(°)$ \geqslant $92$ \geqslant $92
    下载: 导出CSV

    表  7  子孔径系统不同波段温度下的焦距值

    Table  7.   Focal length values of sub aperture systems at different band temperatures

    Temperature/°CMWIR/mmLWIR/mm
    −4047.939548.0351
    +2047.939248.0347
    +6047.939148.0346
    下载: 导出CSV

    表  8  中继转像系统不同波段温度下的焦距值

    Table  8.   Focal length values of relay systems at different band temperatures

    Temperature/°CMWIR/mmLWIR/mm
    −406.15326.1422
    +20 6.14266.1320
    +606.13516.1252
    下载: 导出CSV

    表  9  中继转像系统所有表面YNI和I/IBAR数值

    Table  9.   YNI and I/IBAR values on all surfaces of relay system

    SurfaceYNII/IBAR SurfaceYNII/IBAR
    11.2273.165 91.2650.525
    21.4250.810101.3890.527
    31.4410.81411−1.1743.822
    43.0891.46512−0.97316.673
    5−2.5744.49913−1.2310.089
    6−2.2054.15614−0.1660.243
    70.2670.13715−0.3601.058
    80.1680.07316−0.2820.414
    下载: 导出CSV

    表  10  复眼系统公差分配表

    Table  10.   Tolerance assignment table for compound eye system

    ParametersSpecification
    Radius/fringes±2
    Thickness/mm±0.02
    Surface XY decenter/mm±0.01
    Surface XY tilt/(°)±0.02
    Element XY decenter/mm±0.01
    Element XY tilt/(°)±0.02
    Abbe number0.5%
    Index0.001
    Zernike irregularity/fringes0.1
    下载: 导出CSV
  • [1] CAO A X, WANG J ZH, HUI P, et al. Design and fabrication of a multifocal bionic compound eye for imaging[J]. Bioinspiration &Biomimetics, 2018, 13(2): 026012.
    [2] 巩宪伟, 鱼卫星, 张红鑫, 等. 仿生复眼成像系统设计与制作的研究进展[J]. 中国光学,2013,6(1):34-45.

    GONG X W, YU W X, ZHANG H X, et al. Progress in design and fabrication of artificial compound eye optical systems[J]. Chinese Optics, 2013, 6(1): 34-45. (in Chinese)
    [3] LAW N M, FORS O, WULFKEN P, et al. The Evryscope: the first full-sky gigapixel-scale telescope[J]. Proceedings of SPIE, 2014, 9145: 91450Z.
    [4] 付跃刚, 赵宇, 刘智颖, 等. 基于视场拼接方法的仿生复眼光学系统设计[J]. 仪器仪表学报,2015,36(2):422-429. doi: 10.19650/j.cnki.cjsi.2015.02.022

    FU Y G, ZHAO Y, LIU ZH Y, et al. Design of the bionic compound eye optical system based on field splicing method[J]. Chinese Journal of Scientific Instrument, 2015, 36(2): 422-429. (in Chinese) doi: 10.19650/j.cnki.cjsi.2015.02.022
    [5] 田钰麒. 长波红外与可见光双波段复眼光学系统研究[D]. 长春: 长春理工大学, 2018: 18-27.

    TIAN Y Q. Research on dual-band compound eye optical system with LWIR and VIS[D]. Changchun: Changchun University of Science and Technology, 2018: 18-27. (in Chinese)
    [6] 王元元. 曲面仿生复眼成像系统设计及微加工技术研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2019: 35-69.

    WANG Y Y. Design and micromachining technology of surface bionic compound eye imaging system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2019: 35-69. (in Chinese)
    [7] 许黄蓉, 刘晋亨, 张远杰, 等. 无人机载型曲面仿生复眼成像测速系统[J]. 光子学报,2021,50(9):0911004. doi: 10.3788/gzxb20215009.0911004

    XU H R, LIU J H, ZHANG Y J, et al. UAV-borne biomimetic curved compound-eye imaging system for velocity measurement[J]. Acta Photonica Sinica, 2021, 50(9): 0911004. (in Chinese) doi: 10.3788/gzxb20215009.0911004
    [8] 于晓丹, 张远杰, 王元元, 等. 小型无人机载大视场复眼相机光学系统设计[J]. 光子学报,2019,48(7):0722003. doi: 10.3788/gzxb20194807.0722003

    YU X D, ZHANG Y J, WANG Y Y, et al. Optical design of a compound eye camera with a large-field of view for unmanned aerial vehicles[J]. Acta Photonica Sinica, 2019, 48(7): 0722003. (in Chinese) doi: 10.3788/gzxb20194807.0722003
    [9] 胡雪蕾, 高明, 陈阳. 大视场曲面仿生复眼光学系统设计[J]. 红外与激光工程,2020,49(1):0114002.

    HU X L, GAO M, CHEN Y, et al. Design of curved bionic compound eye optical system with large field of view[J]. Infrared and Laser Engineering, 2020, 49(1): 0114002. (in Chinese)
    [10] 虞林瑶, 魏群, 张天翼, 等. 中波红外长焦距折反光学系统设计[J]. 中国光学,2015,8(2):234-240. doi: 10.3788/co.20150802.0234

    YU L Y, WEI Q, ZHANG T Y, et al. Design of long focal infrared catadioptric optical system for multi-guided system[J]. Chinese Optics, 2015, 8(2): 234-240. (in Chinese) doi: 10.3788/co.20150802.0234
    [11] CHEN Y, GAO M, HU X L, et al. Design of co-aperture wide spectrum compound eye optical system[J]. Acta Photonica Sinica, 2020, 49(3): 0322002. doi: 10.3788/gzxb20204903.0322002
    [12] 徐睆垚, 徐亮, 沈先春, 等. 基于红外多光谱相机分析长后焦距对无热化设计的影响[J]. 物理学报,2021,70(18):184201. doi: 10.7498/aps.70.20210217

    XU H Y, XU L, SHEN X CH, et al. Analysis of influence of long back focal length on athermal design based on infrared multispectral camera[J]. Acta Physica Sinica, 2021, 70(18): 184201. (in Chinese) doi: 10.7498/aps.70.20210217
    [13] 陈潇. 大相对孔径变焦红外光学系统无热化设计[J]. 红外技术,2021,43(12):1183-1187.

    CHEN X. Athermalization of infrared zoom optical system with large relative aperture[J]. Infrared Technology, 2021, 43(12): 1183-1187. (in Chinese)
    [14] 单秋莎, 谢梅林, 刘朝晖, 等. 制冷型长波红外光学系统设计[J]. 中国光学,2022,15(1):72-78.

    SHAN Q SH, XIE M L, LIU ZH H, et al. Design of cooled long-wavelength infrared imaging optical system[J]. Chinese Optics, 2022, 15(1): 72-78. (in Chinese)
    [15] 李晓蕾, 高明. 小型化复合孔径双波段观瞄系统设计[J]. 红外与激光工程,2022,51(4):20210549.

    LI X L, GAO M. Design of miniaturized dual-band observation system with composite aperture[J]. Infrared and Laser Engineering, 2022, 51(4): 20210549. (in Chinese)
  • 加载中
图(25) / 表(10)
计量
  • 文章访问数:  514
  • HTML全文浏览量:  230
  • PDF下载量:  292
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-09
  • 修回日期:  2022-06-27
  • 网络出版日期:  2022-09-16

目录

    /

    返回文章
    返回

    重要通知

    2024年2月16日科睿唯安通过Blog宣布,2024年将要发布的JCR2023中,229个自然科学和社会科学学科将SCI/SSCI和ESCI期刊一起进行排名!《中国光学(中英文)》作为ESCI期刊将与全球SCI期刊共同排名!