留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于力矩促动器的镜面半主动光学支撑系统集成优化设计

张奔雷 杨飞 王富国 卢保伟

张奔雷, 杨飞, 王富国, 卢保伟. 基于力矩促动器的镜面半主动光学支撑系统集成优化设计[J]. 中国光学(中英文), 2022, 15(5): 1066-1078. doi: 10.37188/CO.2022-0121
引用本文: 张奔雷, 杨飞, 王富国, 卢保伟. 基于力矩促动器的镜面半主动光学支撑系统集成优化设计[J]. 中国光学(中英文), 2022, 15(5): 1066-1078. doi: 10.37188/CO.2022-0121
ZHANG Ben-lei, YANG Fei, WANG Fu-guo, LU Bao-wei. Integrated optimization design of mirror semi-active support system based on Warping Harness[J]. Chinese Optics, 2022, 15(5): 1066-1078. doi: 10.37188/CO.2022-0121
Citation: ZHANG Ben-lei, YANG Fei, WANG Fu-guo, LU Bao-wei. Integrated optimization design of mirror semi-active support system based on Warping Harness[J]. Chinese Optics, 2022, 15(5): 1066-1078. doi: 10.37188/CO.2022-0121

基于力矩促动器的镜面半主动光学支撑系统集成优化设计

doi: 10.37188/CO.2022-0121
基金项目: 吉林省科技发展计划(No. 20210402065GH);中国科学院青年创新促进会优秀会员(No. Y202053);中国科学院国际伙伴计划(No. 181722KYSB20200001);国家自然科学基金(No. 11973040)
详细信息
    作者简介:

    张奔雷(1997—),男,山东曹县人,硕士研究生,2019年于中原工学院获得学士学位,主要从事大口径地基望远镜光机结构优化设计方面的研究。E-mail:zhangbenleiii@163.com

    杨 飞(1982—),男,博士,研究员,博士生导师,2009年于中国科学院长春光学精密机械与物理研究所获得硕士学位,2017年于长春理工大学获得博士学位,现主要从事大口径光学工程技术的光机系统研究。E-mail:yangflying@163.com

  • 中图分类号: TH751

Integrated optimization design of mirror semi-active support system based on Warping Harness

Funds: Supported by Science and Technology Development Program of Jilin Province (No. 20210402065GH); Excellent Member of Youth Innovation Promotion Association, CAS (No. Y202053); International Partnership Program of the Chinese Academy of Sciences (No. 181722KYSB20200001); National Natural Science Foundation of China (NSFC) (No. 11973040)
More Information
  • 摘要:

    基于半主动光学技术的半主动支撑,通过力矩促动器(Warping Harness, WH)弹簧叶片将校正力转换为校正力矩,对由重力、温度等误差源引入的镜面低阶像差进行校正。针对利用传统经验设计反射镜时存在的设计缺陷,提出一种反射镜支撑系统优化设计新方法,即结合结构尺寸优化和经验设计的镜面支撑系统综合设计优化方法,并建立一套基于WH 的半主动镜面支撑系统。首先,按照经验公式设计了支撑系统初始结构;设计了一款L形镂空式WH弹簧叶片,并对其开展了非线性分析及疲劳分析,确定叶片厚度为2 mm、寿命为1.2×106次。然后,通过优化镜面支撑点位置、三角板柔节位置、支撑系统柔性件关键尺寸参数,将光轴竖直及水平状态下镜面RMS值由119 nm和106 nm分别降至13.3 nm和4.8 nm;1 °C温差状态下镜面面形差由2.8 nm降至1.9 nm;一阶谐振频率由80 Hz提升至130 Hz。最后,采用提出的方法对半主动支撑系统的校正能力进行验证。结果表明:本套半主动支撑系统对镜面离焦、初级像散、初级慧差、初级球差的校正率最高可达99%,且校正后各像差幅值均小于1 nm;室温自重状态下对镜面面形RMS值校正率最高可达46.5%;温升10°C情况下的校正率为31.28%。

     

  • 图 1  9个支撑点的Whiffletree支撑结构

    Figure 1.  Whiffletree support structure of the mirror with 9 support points

    图 2  镜面侧向定位方案

    Figure 2.  Lateral positioning scheme of the primary mirror

    图 3  支撑系统柔性件结构

    Figure 3.  Diagram structure of the flexible parts of the support system

    图 4  三角板结构设计

    Figure 4.  Triangle plate structure design

    图 5  镜室结构设计

    Figure 5.  Mirror chamber structure design

    图 6  WH弹簧叶片结构设计

    Figure 6.  Structure design of WH spring blade

    图 7  WH弹簧片位移线性分析

    Figure 7.  Linear analysis of the displacement of the WH spring blade

    图 8  WH弹簧叶片应力分析

    Figure 8.  Stress analysis of the WH spring blade

    图 9  支撑点位置优化前后镜面变形对比

    Figure 9.  Comparison of mirror deformation before and after optimization of the support point position

    图 10  3种工况下优化前(上)后(下)镜面变形图

    Figure 10.  Specular deformation diagrams before (top) and after (bottom) optimization under three working conditions

    图 11  镜面支撑系统三维图

    Figure 11.  3D view of the mirror support system

    图 12  镜面系统有限元模型

    Figure 12.  Finite element model of the mirror system

    图 13  校正力与镜面像差影响分析平台

    Figure 13.  Correction force and mirror aberration impact analysis platform

    图 14  各校正力相对Zernike 4~11阶像差Pareto图

    Figure 14.  Pareto diagrams of the 4th to 11th order Zernike aberrations for each correction force

    图 15  半主动支撑系统俯仰过程中镜面各像差校正前后对比及校正率图

    Figure 15.  Comparison before and after correction and their correction rate of each aberration of the mirror surface during the pitching process of the semi-active support system

    图 16  镜面面形与俯仰角度关系图

    Figure 16.  The relationship between mirror surface shape and pitch angle

    图 17  俯仰过程中镜面校正前(上)后(下)云图

    Figure 17.  Cloud maps before (top) and after (bottom) mirror correction during pitching

    图 18  10 °C温升状态下镜面面形校正前(左)后(右)变形云图

    Figure 18.  Deformation cloud diagrams of the mirror’s surface shapes before (left) and after (right) correction under a 10°C temperature rise

    表  1  镜面参数

    Table  1.   Primary mirror parameters

    参数指标
    口径d/mm500.00
    焦距f/mm6000.00
    密度(g/cm-3)2.53
    弹性模量GPa91.00
    泊松比0.24
    热膨胀系数(10−6/K)0.05
    下载: 导出CSV

    表  2  各柔性件截面积计算结果

    Table  2.   Calculation results of the cross-sectional area of each flexible part

    类别F/NL/mmAmin/mm2
    轴向柔性杆12480.0014
    三角板柔节50280.0011
    侧向柔性杆58420.0020
    下载: 导出CSV

    表  3  支撑点位置优化结果

    Table  3.   Optimization results of the support point position

    项目参数
    R1/mm68.3
    R0/mm206.5
    PV/nm52.7
    RMS/nm12.0
    下载: 导出CSV

    表  4  支撑柔性件结构尺寸最优解

    Table  4.   The optimal solution for the structural size of the supporting flexible parts

    项目参数
    H/mm2.9
    Rz/mm1.4
    Rc/mm0.5
    RMSx/nm4.8
    RMSz/nm13.3
    RMSt/nm1.9
    下载: 导出CSV

    表  5  柔性杆轴及侧向解耦结果

    Table  5.   Flexible rod axis and lateral decoupling results

    项目参数
    R/mm1.4
    R/mm0.50
    S轴轴/mm0.00030
    S轴侧/mm0.067
    S/mm0.014
    满足耦合满足
    下载: 导出CSV

    表  6  30 °C时镜面面形校正前后对比

    Table  6.   Comparison of mirror surface shapes before and after correction at 30°C

    Temp_30°CBefore/nmAfter/nmcorrect
    RMS19.213.231.28%
    Power−13.8−0.38297.23%
    Astig0°−0.588−0.078386.68%
    Astig90°0.09980.068031.86%
    Coma0°−0.0211−0.0268−27.01%
    Coma90°−0.00346−0.0466−1246.82%
    Primary spherical−2.43−0.98159.63%
    Trefoil0°−12.8−12.43.13%
    Trefoil90°−1.43−3.45−141.26%
    下载: 导出CSV

    表  7  镜室组件前四阶谐振频率

    Table  7.   The first four-order resonance frequencies of the mirror chamber assembly

    阶数1234
    频率/Hz130.5132.7199.7203.3
    下载: 导出CSV
  • [1] 范文强, 王志臣, 陈宝刚, 等. 地基大口径拼接镜面主动控制技术综述[J]. 中国光学,2020,13(6):1194-1208. doi: 10.37188/CO.2020-0032

    FAN W Q, WANG ZH CH, CHEN B G, et al. Review of the active control technology of large aperture ground telescopes with segmented mirrors[J]. Chinese Optics, 2020, 13(6): 1194-1208. (in Chinese) doi: 10.37188/CO.2020-0032
    [2] 王富国, 吴小霞, 邵亮, 等. 国外大型地基望远镜主镜支撑综述[J]. 激光与红外,2012,42(3):237-243. doi: 10.3969/j.issn.1001-5078.2012.03.001

    WANG F G, WU X X, SHAO L, et al. Review of foreign ground-based telescope primary mirror support[J]. Laser &Infrared, 2012, 42(3): 237-243. (in Chinese) doi: 10.3969/j.issn.1001-5078.2012.03.001
    [3] KAMPHUES F, CHEN L, ZHANG D, et al. Warping harness actuator for the thirty meter telescope primary mirror segments[J]. Proceedings of SPIE, 2020, 11451: 1145150.
    [4] 王克军.天基大口径反射镜轻量化设计及复合支撑技术研究[D]. 中国科学院研究生院(长春光学精密机械与物理研究所), 2016.

    WANG K J. Research on the lightweight design and compound support of the large-aperture mirror for space-based telescope[D]. Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2016. (in Chinese)
    [5] 宫雪非, 陈迅, 陈哲. 拼接子镜力矩促动器布局的优化设计[J]. 光学 精密工程,2019,27(2):363-371. doi: 10.3788/OPE.20192702.0363

    GONG X F, CHEN X, CHEN ZH. Layout optimization of warping harness for segmented-mirror telescope[J]. Optics and Precision Engineering, 2019, 27(2): 363-371. (in Chinese) doi: 10.3788/OPE.20192702.0363
    [6] 徐加慧, 夏立新, 陈诚. 基于有限元法的主镜底支撑的优化分析[J]. 机械设计与制造,2004(3):67-69. doi: 10.3969/j.issn.1001-3997.2004.03.034

    XU J H, XIA L X, CHEN CH. Optimization analysis for the underside support of the primary mirror by the finite element method[J]. Machinery Design &Manufacture, 2004(3): 67-69. (in Chinese) doi: 10.3969/j.issn.1001-3997.2004.03.034
    [7] 王从敬. 1 m口径光电经纬仪主镜及其支撑结构研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2021, doi: 10.27522/d.cnki.gkcgs.2021.000044.

    WANG C J. Research on the primary mirror and supporting structure of photoelectric theodolite with 1m aperture[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2021, doi: 10.27522/d.cnki.gkcgs.2021.000044. (in Chinese)
    [8] 原帅. 2米碳化硅主镜在光机系统中精确定位方法研究[D]. 长春: 中国科学院大学(中国科学院长春光学精密机械与物理研究所), 2018.

    YUAN SH. Research of precise positioning method of 2-m SiC primary mirror in opto-mechanical system[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 2018. (in Chinese)
    [9] 约德. 光机系统设计[M]. 3版. 周海宪, 程云芳, 译. 北京: 机械工业出版社, 2008: 480-481.

    YODER JR P R. Opto-Mechanical Systems Design[M]. 3rd ed. ZHOU H X, CHENG Y F, trans. Beijing: China Machine Press, 2008: 480-481. (in Chinese)
    [10] 吴松航, 董吉洪, 徐抒岩, 等. 快速反射镜椭圆弧柔性铰链多目标优化设计[J]. 红外与激光工程,2021,50(4):20200286. doi: 10.3788/IRLA20200286

    WU S H, DONG J H, XU SH Y, et al. Multi-objective optimal design of elliptic flexible hinge in fast steering mirror[J]. Infrared and Laser Engineering, 2021, 50(4): 20200286. (in Chinese) doi: 10.3788/IRLA20200286
    [11] 韩琳楚. 基于TMT三镜的半主动光学面形校正技术研究[D]. 长春: 中国科学院长春光学精密机械与物理研究所, 2017.

    HAN L CH. Study on correction of semi-active optics technology for large optical flat mirror based on TMT tertiary mirror[D]. Changchun: Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Science, China, 2017. (in Chinese)
    [12] 曲慧东, 魏加立, 董得义, 等. 长条形空间反射镜组件轻量化结构设计[J]. 红外与激光工程,2021,50(6):20200404. doi: 10.3788/IRLA20200404

    QU H D, WEI J L, DONG D Y, et al. Lightweight structural design of rectangular space mirror assembly[J]. Infrared and Laser Engineering, 2021, 50(6): 20200404. (in Chinese) doi: 10.3788/IRLA20200404
    [13] 刘奉昌, 李威, 赵伟国, 等. 临近空间望远镜次镜优化设计[J]. 红外与激光工程,2021,50(2):20200178. doi: 10.3788/IRLA20200178

    LIU F CH, LI W, ZHAO W G, et al. Optimization design of secondary mirror for near space telescope[J]. Infrared and Laser Engineering, 2021, 50(2): 20200178. (in Chinese) doi: 10.3788/IRLA20200178
    [14] 胡海飞, 关英俊, 赵思宏, 等. 大口径反射镜分析驱动设计与优化[J]. 系统仿真学报,2013,25(5):990-994.

    HU H F, GUAN Y J, ZHAO S H et al. Analysis led design and optimization for large aperture mirror[J]. Journal of System Simulation, 2013, 25(5): 990-994. (in Chinese)
    [15] 胡海飞, 罗霄, 辛宏伟, 等. 超大口径光学制造均力支撑布局优化[J]. 光学学报,2014,34(4):0422003. doi: 10.3788/AOS201434.0422003

    HU H F, LUO X, XIN H W, et al. Layout optimization of equal-force supports for ultra-large optical fabrication[J]. Acta Optica Sinica, 2014, 34(4): 0422003. (in Chinese) doi: 10.3788/AOS201434.0422003
    [16] 吴松航, 董吉洪, 徐抒岩, 等. 拼接式望远镜主镜主动支撑技术综述[J]. 激光与光电子学进展,2021,58(3):0300006.

    WU S H, DONG J H, XU SH Y, et al. Overview of active support technology for main mirror of segmented telescopes[J]. Laser &Optoelectronics Progress, 2021, 58(3): 0300006. (in Chinese)
  • 加载中
图(18) / 表(7)
计量
  • 文章访问数:  37
  • HTML全文浏览量:  26
  • PDF下载量:  75
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-11
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-08-03

目录

    /

    返回文章
    返回