留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于差分传递函数法的大口径平面镜检测

安其昌 姜晰文 李洪文 唐境

安其昌, 姜晰文, 李洪文, 唐境. 基于差分传递函数法的大口径平面镜检测[J]. 中国光学(中英文), 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122
引用本文: 安其昌, 姜晰文, 李洪文, 唐境. 基于差分传递函数法的大口径平面镜检测[J]. 中国光学(中英文), 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122
AN Qi-chang, JIANG Xi-wen, LI Hong-wen, TANG Jing. Detection of large aperture flat mirror based on the differential optics transfer function method[J]. Chinese Optics, 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122
Citation: AN Qi-chang, JIANG Xi-wen, LI Hong-wen, TANG Jing. Detection of large aperture flat mirror based on the differential optics transfer function method[J]. Chinese Optics, 2022, 15(5): 992-999. doi: 10.37188/CO.2022-0122

基于差分传递函数法的大口径平面镜检测

基金项目: 国家自然科学基金项目(No. 62005279);中国科学院青年创新促进会(No. 2020221);中国科学院装备研制项目(No. YJKYYQ20200057);吉林省科技发展计划(No. 20220402032GH)
详细信息
    作者简介:

    安其昌(1988—),男,山西太原人,博士,助理研究员,中国科学院青年创新促进会成员。2011年于中国科学技术大学获得工学学士学位,2018 年于中国科学院大学获得博士学位,研究方向为大口径光机系统检测装调。E-mail:anjj@mail.ustc.edu.cn

  • 中图分类号: TH751

Detection of large aperture flat mirror based on the differential optics transfer function method

Funds: Supported by the National Natural Science Foundation of China (No. 62005279); the Youth Innovation Promotion Association of CAS (No. 2020221); the Equipment Development Project of the Chinese Academy of Sciences (No. YJKYYQ20200057); Jilin Science and Technology Development Program (No. 20220402032GH)
  • 摘要:

    为了实现大口径平面镜的原位检测,本文基于差分传递函数结合瑞奇康芒检测架构,利用全息检测方法结合瑞奇康芒法,通过光瞳的遮拦编码实现大口径平面镜的面形检测。首先,对基于差分传递函数法的大口径平面镜检测基本原理进行了推导,并将现有的大口径波前与重建波前进行对比。最后,利用变形镜搭建了检测光路。本文方法所得到面形与输入面形相关性不低于70%。本文的研究成果对宇宙“首光”探测以及“一黑两暗三起源”等宇宙学基础命题的研究均有十分重要的意义。

     

  • 图 1  孔径变分下的标准波前主成分分析结果

    Figure 1.  Principal component analysis results of standard wavefront

    图 2  对彗差与像散混合波前的差分光学传递函数解算幅值(a)及相位(b)

    Figure 2.  (a) The amplitude and (b) phase calculated by the differential optical transfer function for the mixed wavefront of coma and astigmatism

    图 3  孔径变分前(a)、后(b)焦斑能量分布

    Figure 3.  Energy distributions of the focal spot before (a) and after (b) aperture variation

    图 4  2 m级大口径反射镜面形差分光学传递函数解算结果。(a)原始波前;(b)恢复波前;(c)原始波前结构函数;(d)恢复波前结构函数

    Figure 4.  Differential optical transfer function solutions for a 2 m level large aperture mirror shape. (a) Original wavefront. (b) Recovered wavefront. (c) Original wavefront structure function. (d) Recovered wavefront structure function

    图 5  原始波前与复原结果的互相关函数

    Figure 5.  Cross correlation function between the original wavefront and restoration′s result

    图 6  基于全息瑞奇-康芒检测大口径平面镜离散孔径检测架构。(a)光瞳架构;(b)检测光路;(c)孔径变分解算过程

    Figure 6.  Large aperture planar mirror discrete aperture detection architecture based on holographic Ritchey-Common detection. (a) Pupil architecture. (b) Detection optical path. (c) Aperture variational calculation process

    图 7  低阶像差组合的(a)原始波前与(b)重建波前

    Figure 7.  (a) Original wavefront and (b) reconstructed wavefront of low-order aberration combination

    图 8  原始波前与重建波前对应的Zernike系数对比

    Figure 8.  Comparison of Zernike coefficients corresponding to the original wavefront and the reconstructed wavefront

    图 9  解算得到的(a)幅值与(b)相位信息以及(c)实现装置图

    Figure 9.  (a) The amplitude and (b) phase information obtained from the solution and (c) the implementation device

  • [1] CUI X Q, ZHU Y T, LIANG M, et al. Introduction on Chinese 12m optical/infrared telescope (LOT)[J]. Proceedings of SPIE, 2018, 10700: 107001P.
    [2] BOUCHEZ A H, ANGELI G Z, ASHBY D S, et al. An overview and status of GMT active and adaptive optics[J]. Proceedings of SPIE, 2018, 10703: 107030W.
    [3] KORKIAKOSKI V, KELLER C U, DOELMAN N, et al. . High-order wavefront correction with a spatial light modulator: calibrations with dOTF method[C]. Proceedings of Adaptive Optics: Methods, Analysis and Applications 2013, Optica Publishing Group, 2013.
    [4] RODACK A T, KNIGHT J M, CODONA J L, et al. Adaptive optics self-calibration using differential OTF (dOTF)[J]. Proceedings of SPIE, 2015, 9605: 96052B. doi: 10.1117/12.2189583
    [5] KIM D W, OH C J, LOWMAN A, et al. Manufacturing of super-polished large aspheric/freeform optics[J]. Proceedings of SPIE, 2016, 9912: 99120F.
    [6] STUHLINGER T W. Subaperture optical testing: experimental verification[J]. Proceedings of SPIE, 1986, 656: 118-127. doi: 10.1117/12.938467
    [7] CHEN SH Y, DAI Y F, LI SH Y, et al. Error reductions for stitching test of large optical flats[J]. Optics &Laser Technology, 2012, 44(5): 1543-1550.
    [8] KIM C J. Polynomial fit of subaperture interferograms[J]. Proceedings of SPIE, 1983, 351: 28-41. doi: 10.1117/12.933909
    [9] TROLINGER J D. The language of holography[J]. Light:Advanced Manufacturing, 2021, 2(4): 473-481.
    [10] ZHANG J W, DAI S Q, MA CH J, et al. A review of common-path off-axis digital holography: towards high stable optical instrument manufacturing[J]. Light:Advanced Manufacturing, 2021, 2(3): 333-349.
    [11] FRATZ M, SEYLER T, BERTZ A, et al. Digital holography in production: an overview[J]. Light:Advanced Manufacturing, 2021, 2(3): 283-295.
    [12] BONNET H, BIANCAT-MARCHET F, DIMMLER M, et al. Adaptive optics at the ESO ELT[J]. Proceedings of SPIE, 2018, 10703: 1070310.
    [13] WOLFE C R, DOWNIE J D, LAWSON J K. Measuring the spatial frequency transfer function of phase-measuring interferometers for laser optics[J]. Proceedings of SPIE, 1996, 2870: 553-557. doi: 10.1117/12.259943
    [14] PARKS R E. Optical surface specification using the structure function[C]. Proceedings of Optical Fabrication and Testing 2010, Optica Publishing Group, 2010: OWE3.
    [15] SEO B J, NISSLY C, ANGELI G, et al. Analysis of normalized point source sensitivity as a performance metric for large telescopes[J]. Applied Optics, 2009, 48(31): 5997-6007. doi: 10.1364/AO.48.005997
    [16] STOKES A J, DUNCAN B D, DIERKING M P, et al. Improving mid-frequency contrast in sparse aperture optical imaging systems based upon the Golay-9 array[J]. Optics Express, 2010, 18(5): 4417-4427. doi: 10.1364/OE.18.004417
    [17] 孔小辉, 樊学武, 马臻, 等. 大口径平面镜的计算机辅助瑞奇-康芒检验[J]. 应用光学,2010,31(6):984-988. doi: 10.3969/j.issn.1002-2082.2010.06.023

    KONG X H, FAN X W, MA ZH, et al. Computer added Ritchey-Common test for large flat mirror measurement[J]. Journal of Applied Optics, 2010, 31(6): 984-988. (in Chinese) doi: 10.3969/j.issn.1002-2082.2010.06.023
    [18] ZHU SH, ZHANG X H. Eliminating alignment error and analyzing Ritchey angle accuracy in Ritchey-Common test[J]. Optics Communications, 2013, 311: 368-374. doi: 10.1016/j.optcom.2013.08.024
    [19] 刘一鸣, 李金鹏, 陈磊, 等. 采用单位激励影响矩阵数值计算的瑞奇-康芒检测技术[J]. 光学 精密工程,2018,26(4):771-777. doi: 10.3788/OPE.20182604.0771

    LIU Y M, LI J P, CHEN L, et al. Ritchey-Common interferometry using unit-excitation influence matrix's numerical calculation method[J]. Optics and Precision Engineering, 2018, 26(4): 771-777. (in Chinese) doi: 10.3788/OPE.20182604.0771
    [20] 白晓泉, 郭良, 马宏财, 等. 离轴三反望远镜轴向与横向失调量像差耦合特性[J]. 中国光学(中英文),2022,15(4):747-760. doi: 10.37188/CO.2021-0164

    BAI X Q, GUO L, MA H C, et al. Aberration coupling characteristics of axial and lateral misalignments of off-axis three-mirror telescopes[J]. Chinese Optics, 2022, 15(4): 747-760. (in Chinese) doi: 10.37188/CO.2021-0164
    [21] 冯维, 徐仕楠, 王恒辉, 等. 逐像素调制的高反光表面三维测量方法[J]. 中国光学,2022,15(3):488-497. doi: 10.37188/CO.2021-0220

    FENG W, XU SH N, WANG H H, et al. Three-dimensional measurement method of highly reflective surface based on per-pixel modulation[J]. Chinese Optics, 2022, 15(3): 488-497. (in Chinese) doi: 10.37188/CO.2021-0220
  • 加载中
图(9)
计量
  • 文章访问数:  605
  • HTML全文浏览量:  275
  • PDF下载量:  191
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-15
  • 网络出版日期:  2022-08-12

目录

    /

    返回文章
    返回