Hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer
-
摘要:
针对超光谱分辨率成像光谱仪多通道探测需求,本文设计了一种超光谱分辨率紫外双通道共光路成像光谱仪。该成像光谱仪望远系统采用视场离轴的离轴三反结构,分光系统采用了具有小型轻量化优点的改进型Offner结构。通过对Offner光谱仪结构的理论推导,得出了满足超光谱分辨要求的双通道共光路Offner初始结构参数。为了提高成像光谱仪的成像质量,在Offner结构中引入弯月透镜,并对系统进行逐步优化。最终得到的双通道共光路成像光谱仪工作波段为280~300 nm和370~400 nm,在奈奎斯特频率为27.8 lp/mm时,双通道的调制传递函数(MTF)均优于0.8,全视场均方根半径(RMS)均小于9 μm,光谱分辨率均优于0.1 nm。本文研究对天基超光谱探测成像光谱仪小型化、集成化设计具有重要意义。
-
关键词:
- Offner 光谱成像系统 /
- 光学设计 /
- 超光谱分辨率
Abstract:Based on the requirement of multichannel detection for hyperspectral resolution imaging spectrometer, we design a hyperspectral resolution ultraviolet dual channel common optical path imaging spectrometer whose telescopic system adopts an off-axis three mirror structure with an off-axis field of view, and whose spectroscopic system applies a modified small and light weight Offner structure. Through the theoretical analysis of Offner spectrometer structures, initial structural parameters of a dual channel common optical path Offner that met the requirements of hyperspectral resolution were achieved. In order to improve the imaging quality of the imaging spectrometer, meniscus lenses were introduced into Offner structure, and the system was gradually optimized. Eventually, a dual channel common optical path imaging spectrometer was obtained with operating bands of 280~300 nm and 370~400 nm. When the Nyquist frequency is 27.8 lp/mm, the modulation transfer function (MTF) of both channels is better than 0.8, the full field mean square root radius (RMS) is less than 9 μm. and the spectral resolution is better than 0.1 nm. The design of this imaging spectrometer has important implications for the miniaturization and integration design of space-based hyperspectral detection imaging spectrometers.
-
Key words:
- Offner spectral imaging system /
- optical design /
- hyperspectral resolution
-
表 1 本文成像光谱仪的主要技术指标要求
Table 1. Main technical index requirements of the designed spectrometer
Parameter Value Height/km 600 Spectral range /nm 280~300、370~400 F 3.8 Swath/ km 100 Field of view /(°) 9.5 GSD/m ≤50 Spectral resolution /nm ≤0.1 Detector’s pixel size /μm 9×9 Detector’s array size /pixel 4096×4096 Sampling 2×2 binning MTF ≥0.5@27.8 lp/mm 表 2 系统最终的设计参数
Table 2. Final design parameters of the system
Parameter Value Spectral range /nm 280~300、370~400 F 3.8 Focal length of telescope f /mm 238 Field of view /(°) 9.5 GSD/m 45.37 Slit length/mm 40 diffraction order 1 grating period/nm 450 Spectral resolution /nm 0.069 MTF >0.8@27.8 lp/mm RMS/μm <9 -
[1] REININGER F M, DAMI M, PAOLINETTI R, et al. Visible infrared mapping spectrometer-visible channel (VIMS-V)[J]. Proceedings of SPIE, 1994, 2198: 239-250. doi: 10.1117/12.176753 [2] WELLMAN J B, DUVAL J, JUERGENS D, et al. Visible and infrared mapping spectrometer (VIMS): a facility instrument for planetary missions[J]. Proceedings of SPIE, 1987, 0834: 213-221. doi: 10.1117/12.942301 [3] KÖHLER J, JANSEN R, IRIZAR J, et al. Sentinel 5 instrument and UV1 spectrometer subsystem optical design and development[J]. Proceedings of SPIE, 2021, 11852: 118522M. [4] BONI A, TAITI A, BINI A, et al. Sentinel-5 short-wave infrared spectrometer optical design[J]. Proceedings of SPIE, 2018, 10690: 106901J. [5] LOVE S P, OTT L A, POST K W, et al. NACHOS, a CubeSat-based high-resolution UV-Visible hyperspectral imager for remote sensing of trace gases: system overview and science objectives[J]. Proceedings of SPIE, 2021, 11832: 118320E. [6] 孙允珠, 蒋光伟, 李云端, 等. 高分五号卫星方案设计与技术特点[J]. 上海航天,2019,36(S2):1-13. doi: 10.19328/j.cnki.1006-1630.2019.S.001SUN Y ZH, JIANG G W, LI Y D, et al. GF-5 satellite system design and technological characteristics[J]. Aerospace Shanghai, 2019, 36(S2): 1-13. (in Chinese) doi: 10.19328/j.cnki.1006-1630.2019.S.001 [7] 刘银年, 孙德新, 胡晓宁, 等. 高分五号可见短波红外高光谱相机设计与研制[J]. 遥感学报,2020,24(4):333-344.LIU Y N, SUN D X, HU X N, et al. Development of visible and short-wave infrared hyperspectral imager onboard GF-5 satellite[J]. Journal of Remote Sensing, 2020, 24(4): 333-344. (in Chinese) [8] 毕研盟, 王倩, 杨忠东, 等. 碳卫星高光谱二氧化碳探测仪基于太阳夫琅禾费吸收线的在轨波长定标[J]. 大气科学,2022,46(3):645-652.BI Y M, WANG Q, YANG ZH D, et al. TanSat ACGS on-orbit wavelength calibration using the solar Fraunhofer lines[J]. Chinese Journal of Atmospheric Sciences, 2022, 46(3): 645-652. (in Chinese) [9] 王龙, 蔺超, 纪振华, 等. 碳卫星CO2探测仪发射前的漫反射板定标[J]. 光学 精密工程,2018,26(8):1967-1976. doi: 10.3788/OPE.20182608.1967WANG L, LIN CH, JI ZH H, et al. Preflight diffuser’s calibration of carbon dioxide spectrometer of Tan Sat[J]. Optics and Precision Engineering, 2018, 26(8): 1967-1976. (in Chinese) doi: 10.3788/OPE.20182608.1967 [10] 范纪泽, 李博, 张璐, 等. 应用于作物荧光检测的改进型Offner光谱仪设计[J]. 中国光学,2021,14(6):1459-1467. doi: 10.37188/CO.2021-0073FAN J Z, LI B, ZHANG L, et al. Design of an improved Offner spectrometer for crop fluorescence detection[J]. Chinese Optics, 2021, 14(6): 1459-1467. (in Chinese) doi: 10.37188/CO.2021-0073