留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1.8 m空间长条反射镜柔性支撑技术研究

李宗轩 张昌昊 张德福 马斌 李云峰

李宗轩, 张昌昊, 张德福, 马斌, 李云峰. 1.8 m空间长条反射镜柔性支撑技术研究[J]. 中国光学(中英文), 2022, 15(5): 1079-1091. doi: 10.37188/CO.2022-0131
引用本文: 李宗轩, 张昌昊, 张德福, 马斌, 李云峰. 1.8 m空间长条反射镜柔性支撑技术研究[J]. 中国光学(中英文), 2022, 15(5): 1079-1091. doi: 10.37188/CO.2022-0131
LI Zong-xuan, ZHANG Chang-hao, ZHANG De-fu, MA Bin, LI Yun-feng. Flexural mounting technology of a 1.8 m space-borne rectangular mirror[J]. Chinese Optics, 2022, 15(5): 1079-1091. doi: 10.37188/CO.2022-0131
Citation: LI Zong-xuan, ZHANG Chang-hao, ZHANG De-fu, MA Bin, LI Yun-feng. Flexural mounting technology of a 1.8 m space-borne rectangular mirror[J]. Chinese Optics, 2022, 15(5): 1079-1091. doi: 10.37188/CO.2022-0131

1.8 m空间长条反射镜柔性支撑技术研究

基金项目: 吉林省科技发展计划项目(No. 20200201294JC)
详细信息
    作者简介:

    李宗轩(1986—),男,河北衡水人,博士生导师,副研究员,主要从事空间光机集成分析与设计方面研究。E-mail:lizongxuan@ciomp.ac.cn

  • 中图分类号: TP394.1;TH691.9

Flexural mounting technology of a 1.8 m space-borne rectangular mirror

Funds: Supported by Science and Technology Development Program of Jilin Province (No. 20200201294JC)
More Information
  • 摘要:

    1.8 m×0.5 m口径的长条形主反射镜是某空间离轴三反光学系统的重要光学元件,其面形精度的好坏是决定光学系统在轨成像质量的关键。为保证主镜组件结构的稳定性、可靠性及反射镜的面形精度,提出一种适用于大尺寸长条形反射镜的双轴柔性支撑结构。首先,基于运动学等效原理提出双轴柔性支撑的初始结构,建立了柔性环节刚度数学模型并研究了其刚度特性。然后,对柔性支撑的安装位置进行了参数化研究并对柔性支撑的关键尺寸进行了优化设计。最后,确定了反射镜组件的最终设计方案。仿真与试验结果表明,反射镜组件一阶固有频率为104 Hz。X/Y两个光轴分别对径向施加1 G重力时面形精度RMS值分别为4.81 nm、6.09 nm,优于λ/50(λ=632.8 nm),均满足设计要求。组件正样动力学环境试验表明,反射镜组件的动力学特性良好,柔性支撑系统稳定可靠,与仿真结果一致。目前反射镜全口径面形精度已加工至λ/30 RMS,并在此精度下进行了自重0°/180°的±1 G面形检测试验,结果显示其稳定性良好。

     

  • 图 1  大尺寸长条形反射镜的支撑结构原理示意图

    Figure 1.  Schematic diagram of mounting structure of a rectangular mirror with large aperture

    图 2  典型的反射镜约束方式。(a)“2-2-2”约束方式;(b)“3-2-1”约束方式

    Figure 2.  Typical constraints for a mirror. (a) 2-2-2 Constraint; (b) 3-2-1 Constraint

    图 3  基于运动学等效原理的双轴柔性铰链

    Figure 3.  A bi-axial flexural hinge based on kinematic equivalence principle

    图 4  双轴柔性支撑

    Figure 4.  Bi-axial flexural support

    图 5  等效柔性短直梁示意图

    Figure 5.  Schematic diagram of equivalent flexural short straight beam

    图 6  kx与短直梁的高度a、厚度t、宽度w的关系图

    Figure 6.  Relationship between kx and height a, thickness t, width w of the short straight beam

    图 7  kθyatw的关系图

    Figure 7.  Relationship between kθy and a, t, w

    图 8  柔性支撑与重心平面的位置关系

    Figure 8.  Relationship between the flexural support and CG plane

    图 9  反射镜组件有限元模型

    Figure 9.  Finite element model of the mirror assembly

    图 10  1.8 m长条反射镜的光轴

    Figure 10.  Optical axis of 1.8 m rectangular mirror

    图 11  ε1(a)和ε2(b)对RMS值的影响

    Figure 11.  Effect of ε1 (a) and ε2 (b) on the surface figure RMS

    图 12  ε1(a)和ε2(b)对反射镜组件一阶固有频率的影响

    Figure 12.  Effect of ε1 (a) and ε2 (b) on the first-order natural frequency of PMA

    图 13  柔性支撑的安装角度

    Figure 13.  Mounting angle of the flexural supports

    图 14  不同θ1值1 G自重作用下的镜面变形(去除刚体位移)

    Figure 14.  Surface deformation at different θ1 values under 1 G gravity (removed rigid-body displacement)

    图 15  θ2对RMS和一阶固有频率的影响

    Figure 15.  Effect of different θ2 values on the RMS and first-order natural frequency

    图 16  柔性支撑的不同尺寸对面形精度的影响

    Figure 16.  Effect of different sizes of flexural support on the RMS value

    图 17  柔性支撑不同尺寸对一阶固有频率的影响

    Figure 17.  Effect of different sizes of flexural supports on the first-order natural frequency

    图 18  柔性支撑结构示意图

    Figure 18.  Schematic diagram of the flexural supports′ structure

    图 19  镜面在xy向自重作用下的变形(去除刚体位移)

    Figure 19.  Surface deformation under 1 G gravity in x and y directions (rigid-body displacement removed)

    图 20  主镜组件前三阶模态振型

    Figure 20.  The first three modes of PMA

    图 21  动力学试验现场图

    Figure 21.  Dynamic test scene site map

    图 22  x方向扫频试验结果

    Figure 22.  Swept frequency test results in x direction

    图 23  y方向正弦扫频试验

    Figure 23.  Sweep sine vibration result in y direction

    图 24  z方向随机振动试验

    Figure 24.  Random vibration test in z direction

    图 25  反射镜非球面干涉检验原理图

    Figure 25.  Schematic diagram of mirror aspheric interferometry optical testing layout

    图 26  反射镜0°方向的面形检测结果

    Figure 26.  The surface figure of the mirror tested in 0° direction

    图 27  反射镜180°方向的面形检测结果

    Figure 27.  The surface figure of the mirror tested in 180° direction

    表  1  典型反射镜约束方式各支撑点的自由度

    Table  1.   Degree of freedom at each support point for mirror's typical constraints

    (a)“2-2-2”约束方式
    支撑点约束自由度释放自由度
    ATxRxTyTzRyRz
    BTyRyTxTzRxRz
    CTzRzTxTyRxRy
    (b)“3-2-1”约束方式
    支撑点约束自由度释放自由度
    ATxTyTzRxRyRz
    BTyRzTxTyTzRx
    CRxTxTyTzRyRz
    下载: 导出CSV

    表  2  短直梁的尺寸初值

    Table  2.   Initial size values of the short straight beam

    尺寸变量初值/mm尺寸范围/mm
    a2015~25
    t85~10
    w127~15
    下载: 导出CSV

    表  3  柔性支撑1在不同安装角度下的镜面面形值

    Table  3.   Surface figure error of flexural support No.1 at different mounting angles

    角度θx向RMS/nmy向RMS/nm一阶固有频率/Hz
    010.128.5108.75
    903.975.34106.36
    下载: 导出CSV
  • [1] JI H R, ZHU ZH B, TAN H, et al. Design of a high-throughput telescope based on scanning an off-axis three-mirror anastigmat system[J]. Applied Optics, 2021, 60(10): 2817-2823. doi: 10.1364/AO.421998
    [2] 李叶文, 李宗轩, 刘瑞婧, 等. 空间光学遥感器长条形反射镜集成优化设计[J]. 科学技术与工程,2019,19(35):375-381. doi: 10.3969/j.issn.1671-1815.2019.35.057

    LI Y W, LI Z X, LIU R J, et al. Integrated optimization design of rectangular mirror for space optical remote sensor[J]. Science Technology and Engineering, 2019, 19(35): 375-381. (in Chinese) doi: 10.3969/j.issn.1671-1815.2019.35.057
    [3] 李宗轩, 陈雪, 张雷, 等. 大口径空间反射镜Cartwheel型柔性支撑设计[J]. 光学学报,2014,34(6):0622003. doi: 10.3788/AOS201434.0622003

    LI Z X, CHEN X, ZHANG L, et al. Design of Cartwheel flexural support for a large aperture space mirror[J]. Acta Optica Sinica, 2014, 34(6): 0622003. (in Chinese) doi: 10.3788/AOS201434.0622003
    [4] 曲慧东, 魏加立, 董得义, 等. 长条形空间反射镜组件轻量化结构设计[J]. 红外与激光工程,2021,50(6):20200404. doi: 10.3788/IRLA20200404

    QU H D, WEI J L, DONG D Y, et al. Lightweight structural design of rectangular space mirror assembly[J]. Infrared and Laser Engineering, 2021, 50(6): 20200404. (in Chinese) doi: 10.3788/IRLA20200404
    [5] KIHM H, YANG H S. Design optimization of a 1-m lightweight mirror for a space telescope[J]. Optical Engineering, 2013, 52(9): 091806. doi: 10.1117/1.OE.52.9.091806
    [6] 朱俊青, 沙巍, 陈长征, 等. 空间长条形反射镜背部三支撑点的设置[J]. 光学 精密工程,2015,23(9):2562-2569. doi: 10.3788/OPE.20152309.2562

    ZHU J Q, SHA W, CHEN CH ZH, et al. Position layout of rear three point mounting for space rectangular mirror[J]. Optics and Precision Engineering, 2015, 23(9): 2562-2569. (in Chinese) doi: 10.3788/OPE.20152309.2562
    [7] HUO T L, YU J J, ZHAO H ZH. Design of a kinematic flexure mount for precision instruments based on stiffness characteristics of flexural pivot[J]. Mechanism and Machine Theory, 2020, 150: 103868. doi: 10.1016/j.mechmachtheory.2020.103868
    [8] 王朋朋, 辛宏伟, 朱俊青, 等. 长条反射镜及柔节的参数优化设计[J]. 红外与激光工程,2021,50(8):20200493. doi: 10.3788/IRLA20200493

    WANG P P, XIN H W, ZHU J Q, et al. Parametric optimization design of rectangular reflective mirror and flexible component[J]. Infrared and Laser Engineering, 2021, 50(8): 20200493. (in Chinese) doi: 10.3788/IRLA20200493
    [9] 刘福贺, 程志峰, 石磊, 等. 长条形反射镜支撑结构设计与分析[J]. 红外与激光工程,2015,44(5):1512-1517. doi: 10.3969/j.issn.1007-2276.2015.05.021

    LIU F H, CHENG ZH F, SHI L, et al. Design and analysis of supporting structure for rectangular mirror[J]. Infrared and Laser Engineering, 2015, 44(5): 1512-1517. (in Chinese) doi: 10.3969/j.issn.1007-2276.2015.05.021
    [10] 杨秋实, 张继友, 于建海, 等. 大口径空间反射镜支撑变形误差分析方法研究[J]. 航天返回与遥感,2020,41(3):60-70. doi: 10.3969/j.issn.1009-8518.2020.03.007

    YANG Q SH, ZHANG J Y, YU J H, et al. Research on error analysis of support deformation for large aperture space mirrors[J]. Spacecraft Recovery &Remote Sensing, 2020, 41(3): 60-70. (in Chinese) doi: 10.3969/j.issn.1009-8518.2020.03.007
    [11] 刘小涵, 李双成, 李美萱, 等. 离轴三反光学系统主三反射镜支撑结构设计[J]. 红外与激光工程,2021,50(8):20210025. doi: 10.3788/IRLA20210025

    LIU X H, LI SH CH, LI M X, et al. Supporting structure design for primary and tertiary mirror of off-axis TMA system[J]. Infrared and Laser Engineering, 2021, 50(8): 20210025. (in Chinese) doi: 10.3788/IRLA20210025
    [12] KRUIS J R C G. Design, analysis, testing and applications of two-body and three-body kinematic mounts[D]. Lausanne: École Polytechnique Fédérale de Lausanne, 2016.
    [13] HOWELL L L, MAGLEBY S P, OLSEN B M. 柔顺机构设计理论与实例[M]. 陈贵敏, 于靖军, 马洪波, 等译. 北京: 高等教育出版社, 2015.

    HOWELL L L, MAGLEBY S P, OLSEN B M. Handbook of Compliant Mechanisms[M]. CHEN G M, YU J J, MA H B, et al. , trans. Beijing: Higher Education Press, 2015. (in Chinese)
    [14] LI Z X, CHEN X, WANG SH J, et al. Optimal design of a Φ760 mm lightweight SiC mirror and the flexural mount for a space telescope[J]. Review of Scientific Instruments, 2017, 88(12): 125107. doi: 10.1063/1.4986042
  • 加载中
图(27) / 表(3)
计量
  • 文章访问数:  524
  • HTML全文浏览量:  370
  • PDF下载量:  212
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-13
  • 修回日期:  2022-07-26
  • 网络出版日期:  2022-09-15

目录

    /

    返回文章
    返回