留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于量子传感的窄线宽无磁垂直腔面发射激光器

张星 张建伟 周寅利 薛洪波 宁永强 王立军

张星, 张建伟, 周寅利, 薛洪波, 宁永强, 王立军. 用于量子传感的窄线宽无磁垂直腔面发射激光器[J]. 中国光学(中英文), 2022, 15(5): 1038-1044. doi: 10.37188/CO.2022-0135
引用本文: 张星, 张建伟, 周寅利, 薛洪波, 宁永强, 王立军. 用于量子传感的窄线宽无磁垂直腔面发射激光器[J]. 中国光学(中英文), 2022, 15(5): 1038-1044. doi: 10.37188/CO.2022-0135
ZHANG Xing, ZHANG Jian-wei, ZHOU Yin-li, Xue Hong-bo, NING Yong-qiang, WANG Li-jun. Narrow line width and magnetism-free vertical-cavity surface-emitting lasers for quantum sensing[J]. Chinese Optics, 2022, 15(5): 1038-1044. doi: 10.37188/CO.2022-0135
Citation: ZHANG Xing, ZHANG Jian-wei, ZHOU Yin-li, Xue Hong-bo, NING Yong-qiang, WANG Li-jun. Narrow line width and magnetism-free vertical-cavity surface-emitting lasers for quantum sensing[J]. Chinese Optics, 2022, 15(5): 1038-1044. doi: 10.37188/CO.2022-0135

用于量子传感的窄线宽无磁垂直腔面发射激光器

基金项目: 国家重点研发计划(No. 2018YFB2002401);国家自然科学基金项目(No. 62090060, No. 52172165);中国科学院科技网络服务计划项目(No. KFJ-STS-QYZD-2021-15-001);中国科学院青年创新促进会(No. 2017260, No. 2018181)
详细信息
    作者简介:

    张 星(1983—),男,吉林辉南人,博士,硕士生导师,2005年于吉林大学获得学士学位;2011年于中国科学院长春光学精密机械与物理研究所获得博士学位,主要从事窄线宽垂直腔面发射激光器芯片研究。E-mail:zhangx@ciomp.ac.cn

  • 中图分类号: TN248.4

Narrow line width and magnetism-free vertical-cavity surface-emitting lasers for quantum sensing

Funds: Supported by National Key Research and Development Program (No. 2018YFB2002401); National Natural Science Foundation of China (No. 62090060, No. 52172165); Science and Technology Service Network Program of the Chinese Academy of Sciences (No. KFJ-STS-QYZD-2021-15-001); Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2017260, No. 2018181)
More Information
  • 摘要:

    为了研制出表面微透镜集成外腔的垂直腔面发射激光器(VCSEL),实现窄线宽无磁激光输出,满足原子磁强计等量子传感器应用要求,本文设计并生长了适合于表面集成微透镜的VCSEL外延结构,完成了表面微透镜集成外腔VCSEL器件制备,在电极材料方面选取无磁材料以满足应用要求。实验结果表明:研制的VCSEL器件工作温度达到90 °C,激光波长为896.3 nm,功率为1.52 mW,边模抑制比为36.3 dB,激光线宽为38 MHz,封装为模组后的磁场强度低于0.03 nT。结果表明本文研制的窄线宽无磁VCSEL满足量子传感的应用需求。

     

  • 图 1  VCSEL器件结构示意图

    Figure 1.  Schematic diagram of VCSEL structure

    图 2  封装后的VCSEL

    Figure 2.  The packaged VCSEL

    图 3  湿法刻蚀微透镜的工艺流程

    Figure 3.  Fabrication steps of micro-lens wet etching

    图 4  微透镜表面形貌AFM测试结果

    Figure 4.  Surface morphology of the micro-lens by AFM

    图 5  25 °C下测试得到的功率-电流-电压曲线

    Figure 5.  P-I-V characteristics at room temperature (25 °C)

    图 6  20~90 °C下测试得到的功率-电流曲线

    Figure 6.  P-I characteristics under 20~90 °C

    图 7  VCSEL的输出光谱测试结果

    Figure 7.  Measured output spectrum of the VCSEL

    图 8  VCSEL线宽测试结果

    Figure 8.  Measured frequency line width of the VCSEL

    图 9  无磁封装VCSEL光源模组

    Figure 9.  Packaged VCSEL magnetism-free module

    图 10  VCSEL模组剩磁测试结果

    Figure 10.  Testing results of the remaining magnetic field intensity of VCSEL

  • [1] SODA H, IGA K I, KITAHARA C, et al. GaInAsP/InP surface emitting injection lasers[J]. Japanese Journal of Applied Physics, 1979, 18(12): 2329-2330. doi: 10.1143/JJAP.18.2329
    [2] 张继业, 李雪, 张建伟, 等. 垂直腔面发射激光器研究进展[J]. 发光学报,2020,41(12):1443-1459. doi: 10.37188/CJL.20200339

    ZHANG J Y, LI X, ZHANG J W, et al. Research progress of vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence, 2020, 41(12): 1443-1459. (in Chinese) doi: 10.37188/CJL.20200339
    [3] 张建伟, 宁永强, 张星, 等. 高温工作垂直腔面发射半导体激光器 现状与未来(特邀)[J]. 光子学报,2022,51(2):0251201. doi: 10.3788/gzxb20225102.0251201

    ZHANG J W, NING Y Q, ZHANG X, et al. Development and future of vertical cavity surface emitting lasers operated at high temperatures (invited)[J]. Acta Photonica Sinica, 2022, 51(2): 0251201. (in Chinese) doi: 10.3788/gzxb20225102.0251201
    [4] LARSSON A. Advances in VCSELs for communication and sensing[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1552-1567. doi: 10.1109/JSTQE.2011.2119469
    [5] 刘安金. 单模直调垂直腔面发射激光器研究进展[J]. 中国激光,2020,47(7):0701005. doi: 10.3788/CJL202047.0701005

    LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting lasers[J]. Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese) doi: 10.3788/CJL202047.0701005
    [6] IGA K. Forty years of vertical-cavity surface-emitting laser: invention and innovation[J]. Japanese Journal of Applied Physics, 2018, 57(8S2): 08PA01. doi: 10.7567/JJAP.57.08PA01
    [7] HONG K B, HUANG W T, CHUNG H C, et al. High-speed and high-power 940 nm flip-chip VCSEL array for LiDAR application[J]. Crystals, 2021, 11(10): 1237. doi: 10.3390/cryst11101237
    [8] 刘畅, 肖垚, 刘恒, 等. 多结级联垂直腔面发射激光器失效分析[J]. 发光学报,2022,43(3):388-395. doi: 10.37188/CJL.20210396

    LIU CH, XIAO Y, LIU H, et al. Failure analysis of multi-junction cascade vertical cavity surface emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(3): 388-395. (in Chinese) doi: 10.37188/CJL.20210396
    [9] 何晓颖, 董建, 胡帅, 等. 采用BCB平整技术的高速850 nm垂直面发射激光器[J]. 中国光学,2018,11(2):190-197. doi: 10.3788/co.20181102.0190

    HE X Y, DONG J, HU SH, et al. High-speed 850 nm vertical-cavity surface-emitting lasers with BCB planarization technique[J]. Chinese Optics, 2018, 11(2): 190-197. (in Chinese) doi: 10.3788/co.20181102.0190
    [10] 周广正, 兰天, 李颖, 等. 高温稳定25 Gbit/s 850 nm垂直腔面发射激光器[J]. 发光学报,2019,40(5):630-634. doi: 10.3788/fgxb20194005.0630

    ZHOU G ZH, LAN T, LI Y, et al. High temperature-stable 25 Gbit/s 850 nm vertical-cavity surface-emitting lasers[J]. Chinese Journal of Luminescence, 2019, 40(5): 630-634. (in Chinese) doi: 10.3788/fgxb20194005.0630
    [11] KHAN Z, CHANG Y H, PAN T L, et al. High-brightness, high-speed, and low-noise VCSEL arrays for optical wireless communication[J]. IEEE Access, 2022, 10: 2303-2317. doi: 10.1109/ACCESS.2021.3133436
    [12] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 2017, 89(3): 035002. doi: 10.1103/RevModPhys.89.035002
    [13] 王宇, 赵惟玉, 康翔宇, 等. SERF原子磁强计最新进展及应用综述[J]. 光学仪器,2021,43(6):77-86.

    WANG Y, ZHAO W Y, KANG X Y, et al. The latest development and application of SERF atomic magnetometer: a review[J]. Optical Instruments, 2021, 43(6): 77-86. (in Chinese)
    [14] 张星, 张建伟, 张建, 等. 原子传感用垂直腔面发射激光器研究进展[J]. 导航与控制,2020,19(1):116-124. doi: 10.3969/j.issn.1674-5558.2020.01.013

    ZHANG X, ZHANG J W, ZHANG J, et al. Progress on vertical-cavity surface-emitting laser for atomic sensing applications[J]. Navigation and Control, 2020, 19(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1674-5558.2020.01.013
    [15] 张福领, 付丽珊, 胡丕丽, 等. 795 nm亚波长光栅耦合腔垂直腔面发射激光器的超窄线宽特性[J]. 物理学报,2021,70(22):224207. doi: 10.7498/aps.70.20210293

    ZHANG F L, FU L SH, HU P L, et al. Ultra-narrow linewidth characteristics of 795-nm subwavelength grating-coupled cavity vertical cavity surface emitting laser[J]. Acta Physica Sinica, 2021, 70(22): 224207. (in Chinese) doi: 10.7498/aps.70.20210293
    [16] ZHANG J W, ZHANG X, ZHU H B, et al. High-temperature operating 894.6 nm-VCSELs with extremely low threshold for Cs-based chip scale atomic clocks[J]. Optics Express, 2015, 23(11): 14763-14773. doi: 10.1364/OE.23.014763
    [17] 宋金伟, 张峰, 郭艳玲, 等. 基于非磁性材料Cr/Au的VCSEL欧姆接触特性[J]. 微纳电子技术,2020,57(6):430-435,449. doi: 10.13250/j.cnki.wndz.2020.06.002

    SONG J W, ZHANG F, GUO Y L, et al. Ohmic contact properties of VCSEL based on non-magnetic material Cr/Au[J]. Micronanoelectronic Technology, 2020, 57(6): 430-435,449. (in Chinese) doi: 10.13250/j.cnki.wndz.2020.06.002
    [18] WANG ZH F, NING Y Q, ZHANG Y, et al. High power and good beam quality of two-dimensional VCSEL array with integrated GaAs microlens array[J]. Optics Express, 2010, 18(23): 23900-23905. doi: 10.1364/OE.18.023900
  • 加载中
图(10)
计量
  • 文章访问数:  1039
  • HTML全文浏览量:  665
  • PDF下载量:  238
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-17
  • 修回日期:  2022-06-28
  • 网络出版日期:  2022-08-03

目录

    /

    返回文章
    返回