留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

长春光机所高速垂直腔面发射激光器研究进展

田思聪 佟存柱 王立军 Bimberg Dieter

田思聪, 佟存柱, 王立军, Bimberg Dieter. 长春光机所高速垂直腔面发射激光器研究进展[J]. 中国光学(中英文), 2022, 15(5): 946-953. doi: 10.37188/CO.2022-0136
引用本文: 田思聪, 佟存柱, 王立军, Bimberg Dieter. 长春光机所高速垂直腔面发射激光器研究进展[J]. 中国光学(中英文), 2022, 15(5): 946-953. doi: 10.37188/CO.2022-0136
TIAN Si-cong, TONG Cun-zhu, WANG Li-jun, BIMBERG Dieter. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. doi: 10.37188/CO.2022-0136
Citation: TIAN Si-cong, TONG Cun-zhu, WANG Li-jun, BIMBERG Dieter. Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP[J]. Chinese Optics, 2022, 15(5): 946-953. doi: 10.37188/CO.2022-0136

长春光机所高速垂直腔面发射激光器研究进展

doi: 10.37188/CO.2022-0136
基金项目: 国家重点研发计划(No. 2021YFB2801000,No. 2018YFB2201000);国家自然科学基金(No. 61774156,No. 62174159,No. 62061136010);中国科学院青年创新促进会(No. 2018249);中德科学中心合作交流项目(No. M0386);吉林省国际合作项目(No. 20210402055GH)。
详细信息
    作者简介:

    田思聪(1984—),男,吉林长春人,研究员,博士生导师,主要从事高速垂直腔面发射激光器的研究。E-mail:tiansicong@ciomp.ac.cn

    佟存柱(1976—),男,吉林伊通人,发光学及应用国家重点实验室常务副主任,研究员,博士生导师,主要从事高亮度半导体激光器、面发射激光器和碟片激光器的研究工作。E-mail:tongcz@ciomp.ac.cn

    王立军(1946—),男,吉林舒兰人,中国科学院院士,研究员,博士生导师,主要从事激光技术等领域的基础及应用研究。E-mail:wanglj@ciomp.ac.cn

    Bimberg Dieter(1942—),男,德国籍,德国科学院院士、美国工程院院士、美国发明家学会院士、俄罗斯科学院院士,Bimberg中德绿色光子学研究中心主任,柏林工业大学教授,博士研究生导师,主要从事量子点激光器、高速垂直腔面发射激光器、高亮度半导体激光器的研究。E-mail:bimberg@physik.tu-berlin.de

  • 中图分类号: TP394.1;TH691.9

Research progress of high-speed vertical-cavity surface-emitting laser in CIOMP

Funds: Supported by National Key R&D Program of China (No. 2021YFB2801000, No. 2018YFB2201000); National Natural Science Foundation of China (No. 61774156, No. 62174159, No. 62061136010); Youth Innovation Promotion Association, CAS (No. 2018249); Sino-German Center for Research Promotion Joint Mobility Program of DFG and NSFC (No. M0386); International Cooperation Project of Jilin Province (No. 20210402055GH).
More Information
  • 摘要:

    高速垂直腔面发射激光器(VCSEL)是高速光通信的主要光源之一,受数据流量的迅速增长牵引,高速VCSEL正向更大带宽、更高速率方向发展。长春光机所团队通过优化VCSEL外延设计和生长、器件设计和制备、以及性能表征技术,在多个波长的高速VCSEL的调制带宽、传输速率、模式、功耗等性能方面取得了显著进展。实现高速单模940 nm VCSEL 27.65 GHz调制带宽和53 Gbit/s传输速率;通过波分复用基于850 nm、880 nm、910 nm和940 nm高速VCSEL实现200 Gbit/s链路方案;通过光子寿命优化,实现高速VCSEL低至100 fJ/bit的超低能耗;实现1030 nm高速VCSEL 25 GHz调制带宽;实现1550 nm 高速VCSEL 37 Gbit/s传输速率。研制的高速VCSEL在光通信等领域有重要应用前景。

     

  • 图 1  氧化限制型高速VCSEL截面示意图

    Figure 1.  Schematic diagram of the cross-section of the oxidation-limited high-speed VCSEL

    图 2  室温下3 μm、6 μm和9 μm氧化孔径的高速940 nm VCSEL测试结果。(a)L-I;(b)V-I;(c)光谱;(d)边模抑制比;(e)3 dB带宽;(f)眼图[16]

    Figure 2.  The measurement results of the 940 nm VCSELs with 3 μm、6 μm and 9 μm oxidation aperture at room temperature. (a) L-I; (b) V-I; (c) optical spectrum; (d) side-mode suppression ratio (SMSR); (e) the bandwidth of 3 dB; (f) the eye diagram[16]

    图 3  (a)基于4个波长的VCSEL和多模光纤的WDM传输示意图[2];(b)850 nm、880 nm、910 nm和940 nm 高速VCSEL光谱[12]

    Figure 3.  (a) Schematic diagram of the WDM system using four VCSELs and MMF[2]; (b) the optical spectrum of the 850 nm、880 nm、910 nm and 940 nm VCSELs[12]

    图 4  较长光子寿命(蓝线)和较短光子寿命(红线)的高速VCSEL的大信号调制的比特率BR和能耗EDR关系。通过实验计算的频谱效率约为M=2.1[20]

    Figure 4.  EDR and BR values from large signal measurements, for a long photon lifetime (blue) and a short photon lifetime (red). The spectral efficiency of M=2.1 bit was found experimentally by the large signal measurement results[20]

    图 5  (a)设计的VCSEL折射率分布和驻波场分布;(b)氧化后的VCSEL截面SEM;(c)1030 nm VCSEL L-I-V;(d)1030 nm VCSEL光谱;(e)25 ℃条件下1030 nm VCSEL 小信号响应;(f)85 ℃条件下1030 nm VCSEL 小信号响应

    Figure 5.  (a) Refractive index profile and the standing wave distribution of the designed VCSEL; (b)SEM image of the cross section of the VCSEL after the oxidation; (c) the L-I-V of the 1030 nm VCSEL; (d) the optical spectrum of the 1030 nm VCSEL; (e) the small signal response of the 1030 nm VCSEL at 25 °C; (f) the small signal response of the 1030 nm VCSEL at 85 °C

    图 6  (a)高速1550 nm VCSEL传输眼图;(b)高速1550 nm VCSEL浴盆曲线。BTJ为6 μm。

    Figure 6.  (a) The eye diagram of the 1550 nm VCSEL; (b) the bathtub curve of the 1550 nm VCSEL. BTJ is 6 μm.

  • [1] Global Internet Growth and Trends (Source: Cisco VNI Global IP Traffic Forecast, 2017-2022)[EB/OL]. https://cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf.
    [2] TIAN S C, AHAMED M, LARISCH G, et al. Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems[J]. Japanese Journal of Applied Physics, 2022, 61(SK): SK0801. doi: 10.35848/1347-4065/ac65d9
    [3] TATUM J A, LANDRY G D, GAZULA D, et al. . VCSEL-based optical transceivers for future data center applications[C]. 2018 Optical Fiber Communications Conference and Exposition, IEEE, 2018: 1-3.
    [4] FENG M, WU C H, HOLONYAK N. Oxide-confined VCSELs for high-speed optical interconnects[J]. IEEE Journal of Quantum Electronics, 2018, 54(3): 2400115.
    [5] HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/s[J]. Electronics Letters, 2015, 51(14): 1096-1098. doi: 10.1049/el.2015.0785
    [6] CHENG C L, LEDENTSOV N, KHAN Z, et al. Ultrafast Zn-diffusion and oxide-relief 940 nm vertical-cavity surface-emitting lasers under high-temperature operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1700507.
    [7] HAGHIGHI N, LARISCH G, ROSALES R, et al. . 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs[C]. 2018 IEEE International Semiconductor Laser Conference, IEEE, 2018: 1-2.
    [8] SIMPANEN E, GUSTAVSSON J S, HAGLUND E, et al. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate[J]. Electronics Letters, 2017, 53(13): 869-871. doi: 10.1049/el.2017.1165
    [9] KUCHTA D M, RYLYAKOV A V, DOANY F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J]. IEEE Photonics Technology Letters, 2015, 27(6): 577-580. doi: 10.1109/LPT.2014.2385671
    [10] 杨卓凯, 田思聪, LARISCH G, 等. 基于PAM4调制的高速垂直腔面发射激光器研究进展[J]. 发光学报,2020,41(4):399-413. doi: 10.3788/fgxb20204104.0399

    YANG ZH K, TIAN S C, LARISCH G, et al. High-speed vertical-cavity surface-emitting lasers based on PAM4 modulation[J]. Chinese Journal of Luminescence, 2020, 41(4): 399-413. (in Chinese) doi: 10.3788/fgxb20204104.0399
    [11] ZUO T J, ZHANG T T, ZHANG S, et al. . Single-lane 200-Gbps PAM-4 transmission for Datacenter Intra-Connections employing 850-nm VCSEL[C]. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications, IEEE, 2020: 1-3.
    [12] LARISCH G, ROSALES R, BIMBERG D. Energy-efficient 50+ Gb/s VCSELs for 200+ Gb/s optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1701105.
    [13] STEPNIAK G, LEWANDOWSKI A, KROPP J R, et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF[J]. Electronics Letters, 2016, 52(8): 633-635. doi: 10.1049/el.2015.4264
    [14] MOSER P, LOTT J A, WOLF P, et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J]. Electronics Letters, 2012, 48(20): 1292-1294. doi: 10.1049/el.2012.2944
    [15] 刘安金. 单模直调垂直腔面发射激光器研究进展[J]. 中国激光,2020,47(7):0701005. doi: 10.3788/CJL202047.0701005

    LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese) doi: 10.3788/CJL202047.0701005
    [16] 徐汉阳, 田思聪, 韩赛一, 等. 53 Gbit/s高速单模940 nm垂直腔面发射激光器[J]. 发光学报,2022,43(7):1114-1120.

    XU H Y, TIAN S C, HAN S Y, et al. 53 Gbit/s high speed single mode 940 nm vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(7): 1114-1120. (in Chinese)
    [17] WESTBERGH P, GUSTAVSSON J S, KÖGEL B, et al. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603-1613. doi: 10.1109/JSTQE.2011.2114642
    [18] HU SH, HE X Y, HE Y, et al. Impact of damping on high speed 850 nm VCSEL performance[J]. Journal of Semiconductors, 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006
    [19] LARISCH G, MOSER P, LOTT J A, et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2327-2330. doi: 10.1109/LPT.2016.2592985
    [20] LARISCH G, TIAN S C, BIMBERG D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates[J]. Optics Express, 2020, 28(13): 18931-18937. doi: 10.1364/OE.391781
    [21] KUCHTA D M. High-speed low-power short-reach optical interconnects for high-performance computing and servers[J]. Proceedings of SPIE, 2014, 9010: 901007.
    [22] LI M J. Novel optical fibers for data center applications[J]. Proceedings of SPIE, 2016, 9772: 977205.
    [23] 韩赛一, 田思聪, 徐汉阳, 等. 高速1 550 nm垂直腔面发射激光器研究进展[J]. 发光学报,2022,43(5):736-744. doi: 10.37188/CJL.20220048

    HAN S Y, TIAN S C, XU H Y, et al. Research progress of high-speed 1 550 nm vertical cavity surface emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(5): 736-744. (in Chinese) doi: 10.37188/CJL.20220048
    [24] BABICHEV A V, KARACHINSKY L Y, NOVIKOV I I, et al. 6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application[J]. IEEE Journal of Quantum Electronics, 2017, 53(6): 2400808.
  • 加载中
图(6)
计量
  • 文章访问数:  76
  • HTML全文浏览量:  32
  • PDF下载量:  72
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-18
  • 修回日期:  2022-07-14
  • 网络出版日期:  2022-08-29

目录

    /

    返回文章
    返回