-
摘要:
高速垂直腔面发射激光器(VCSEL)是高速光通信的主要光源之一,受数据流量的迅速增长牵引,高速VCSEL正向更大带宽、更高速率方向发展。长春光机所团队通过优化VCSEL外延设计和生长、器件设计和制备、以及性能表征技术,在多个波长的高速VCSEL的调制带宽、传输速率、模式、功耗等性能方面取得了显著进展。实现高速单模940 nm VCSEL 27.65 GHz调制带宽和53 Gbit/s传输速率;通过波分复用基于850 nm、880 nm、910 nm和940 nm高速VCSEL实现200 Gbit/s链路方案;通过光子寿命优化,实现高速VCSEL低至100 fJ/bit的超低能耗;实现1030 nm高速VCSEL 25 GHz调制带宽;实现1550 nm 高速VCSEL 37 Gbit/s传输速率。研制的高速VCSEL在光通信等领域有重要应用前景。
Abstract:High-speed vertical-cavity surface-emitting laser (VCSEL) is one of the main light sources for optical communication. Driven by the rapid growth of data traffic, the high-speed VCSEL is developing towards larger bandwidth and higher bit rate. By optimizing the epitaxy design and the growth of VCSELs, the design and the fabrication of VCSELs, and the high-frequency characterization techniques, much remarkable progress of high-speed VCSELs with different wavelengths have been achieved in modulation bandwidth, transmission rate, mode, power consumption in Changchun Institute of Optics, Fine Machanics and Physics (CIOMP). The research progress of high-speed VCSELs includes: high-speed single-mode 940 nm VCSEL with 27.65 GHz modulation bandwidth and 53 Gbit/s transmission rate; 200 Gbit/s optical link based on 850 nm, 880 nm, 910 nm and 940 nm high-speed VCSELs via wavelength division multiplexing; ultra-low power consumption as low as 100 fJ/bit of high-speed VCSEL via optimization of photon lifetime; 1030 nm high-speed VCSEL with 25 GHz modulation bandwidth; 1550 nm high-speed VCSEL with 37 Gbit/s transmission rate. The developed high-speed VCSELs have important application prospects in optical communication.
-
图 2 室温下3 μm、6 μm和9 μm氧化孔径的高速940 nm VCSEL测试结果。(a)L-I;(b)V-I;(c)光谱;(d)边模抑制比;(e)3 dB带宽;(f)眼图[16]
Figure 2. The measurement results of the 940 nm VCSELs with 3 μm、6 μm and 9 μm oxidation aperture at room temperature. (a) L-I; (b) V-I; (c) optical spectrum; (d) side-mode suppression ratio (SMSR); (e) the bandwidth of 3 dB; (f) the eye diagram[16]
图 4 较长光子寿命(蓝线)和较短光子寿命(红线)的高速VCSEL的大信号调制的比特率BR和能耗EDR关系。通过实验计算的频谱效率约为M=2.1[20]
Figure 4. EDR and BR values from large signal measurements, for a long photon lifetime (blue) and a short photon lifetime (red). The spectral efficiency of M=2.1 bit was found experimentally by the large signal measurement results[20]
图 5 (a)设计的VCSEL折射率分布和驻波场分布;(b)氧化后的VCSEL截面SEM;(c)1030 nm VCSEL L-I-V;(d)1030 nm VCSEL光谱;(e)25 ℃条件下1030 nm VCSEL 小信号响应;(f)85 ℃条件下1030 nm VCSEL 小信号响应
Figure 5. (a) Refractive index profile and the standing wave distribution of the designed VCSEL; (b)SEM image of the cross section of the VCSEL after the oxidation; (c) the L-I-V of the 1030 nm VCSEL; (d) the optical spectrum of the 1030 nm VCSEL; (e) the small signal response of the 1030 nm VCSEL at 25 °C; (f) the small signal response of the 1030 nm VCSEL at 85 °C
-
[1] Global Internet Growth and Trends (Source: Cisco VNI Global IP Traffic Forecast, 2017-2022)[EB/OL]. https://cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.pdf. [2] TIAN S C, AHAMED M, LARISCH G, et al. Novel energy-efficient designs of vertical-cavity surface emitting lasers for the next generations of photonic systems[J]. Japanese Journal of Applied Physics, 2022, 61(SK): SK0801. doi: 10.35848/1347-4065/ac65d9 [3] TATUM J A, LANDRY G D, GAZULA D, et al. . VCSEL-based optical transceivers for future data center applications[C]. 2018 Optical Fiber Communications Conference and Exposition, IEEE, 2018: 1-3. [4] FENG M, WU C H, HOLONYAK N. Oxide-confined VCSELs for high-speed optical interconnects[J]. IEEE Journal of Quantum Electronics, 2018, 54(3): 2400115. [5] HAGLUND E, WESTBERGH P, GUSTAVSSON J S, et al. 30 GHz bandwidth 850 nm VCSEL with sub-100 fJ/bit energy dissipation at 25-50 Gbit/s[J]. Electronics Letters, 2015, 51(14): 1096-1098. doi: 10.1049/el.2015.0785 [6] CHENG C L, LEDENTSOV N, KHAN Z, et al. Ultrafast Zn-diffusion and oxide-relief 940 nm vertical-cavity surface-emitting lasers under high-temperature operation[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1700507. [7] HAGHIGHI N, LARISCH G, ROSALES R, et al. . 35 GHz bandwidth with directly current modulated 980 nm oxide aperture single cavity VCSELs[C]. 2018 IEEE International Semiconductor Laser Conference, IEEE, 2018: 1-2. [8] SIMPANEN E, GUSTAVSSON J S, HAGLUND E, et al. 1060 nm single-mode vertical-cavity surface-emitting laser operating at 50 Gbit/s data rate[J]. Electronics Letters, 2017, 53(13): 869-871. doi: 10.1049/el.2017.1165 [9] KUCHTA D M, RYLYAKOV A V, DOANY F E, et al. A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link[J]. IEEE Photonics Technology Letters, 2015, 27(6): 577-580. doi: 10.1109/LPT.2014.2385671 [10] 杨卓凯, 田思聪, LARISCH G, 等. 基于PAM4调制的高速垂直腔面发射激光器研究进展[J]. 发光学报,2020,41(4):399-413. doi: 10.3788/fgxb20204104.0399YANG ZH K, TIAN S C, LARISCH G, et al. High-speed vertical-cavity surface-emitting lasers based on PAM4 modulation[J]. Chinese Journal of Luminescence, 2020, 41(4): 399-413. (in Chinese) doi: 10.3788/fgxb20204104.0399 [11] ZUO T J, ZHANG T T, ZHANG S, et al. . Single-lane 200-Gbps PAM-4 transmission for Datacenter Intra-Connections employing 850-nm VCSEL[C]. 2020 Asia Communications and Photonics Conference (ACP) and International Conference on Information Photonics and Optical Communications, IEEE, 2020: 1-3. [12] LARISCH G, ROSALES R, BIMBERG D. Energy-efficient 50+ Gb/s VCSELs for 200+ Gb/s optical interconnects[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25(6): 1701105. [13] STEPNIAK G, LEWANDOWSKI A, KROPP J R, et al. 54 Gbit/s OOK transmission using single-mode VCSEL up to 2.2 km MMF[J]. Electronics Letters, 2016, 52(8): 633-635. doi: 10.1049/el.2015.4264 [14] MOSER P, LOTT J A, WOLF P, et al. 56 fJ dissipated energy per bit of oxide-confined 850 nm VCSELs operating at 25 Gbit/s[J]. Electronics Letters, 2012, 48(20): 1292-1294. doi: 10.1049/el.2012.2944 [15] 刘安金. 单模直调垂直腔面发射激光器研究进展[J]. 中国激光,2020,47(7):0701005. doi: 10.3788/CJL202047.0701005LIU A J. Progress in single-mode and directly modulated vertical-cavity surface-emitting laser[J]. Chinese Journal of Lasers, 2020, 47(7): 0701005. (in Chinese) doi: 10.3788/CJL202047.0701005 [16] 徐汉阳, 田思聪, 韩赛一, 等. 53 Gbit/s高速单模940 nm垂直腔面发射激光器[J]. 发光学报,2022,43(7):1114-1120.XU H Y, TIAN S C, HAN S Y, et al. 53 Gbit/s high speed single mode 940 nm vertical-cavity surface-emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(7): 1114-1120. (in Chinese) [17] WESTBERGH P, GUSTAVSSON J S, KÖGEL B, et al. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2011, 17(6): 1603-1613. doi: 10.1109/JSTQE.2011.2114642 [18] HU SH, HE X Y, HE Y, et al. Impact of damping on high speed 850 nm VCSEL performance[J]. Journal of Semiconductors, 2018, 39(11): 114006. doi: 10.1088/1674-4926/39/11/114006 [19] LARISCH G, MOSER P, LOTT J A, et al. Impact of photon lifetime on the temperature stability of 50 Gb/s 980 nm VCSELs[J]. IEEE Photonics Technology Letters, 2016, 28(21): 2327-2330. doi: 10.1109/LPT.2016.2592985 [20] LARISCH G, TIAN S C, BIMBERG D. Optimization of VCSEL photon lifetime for minimum energy consumption at varying bit rates[J]. Optics Express, 2020, 28(13): 18931-18937. doi: 10.1364/OE.391781 [21] KUCHTA D M. High-speed low-power short-reach optical interconnects for high-performance computing and servers[J]. Proceedings of SPIE, 2014, 9010: 901007. [22] LI M J. Novel optical fibers for data center applications[J]. Proceedings of SPIE, 2016, 9772: 977205. [23] 韩赛一, 田思聪, 徐汉阳, 等. 高速1 550 nm垂直腔面发射激光器研究进展[J]. 发光学报,2022,43(5):736-744. doi: 10.37188/CJL.20220048HAN S Y, TIAN S C, XU H Y, et al. Research progress of high-speed 1 550 nm vertical cavity surface emitting laser[J]. Chinese Journal of Luminescence, 2022, 43(5): 736-744. (in Chinese) doi: 10.37188/CJL.20220048 [24] BABICHEV A V, KARACHINSKY L Y, NOVIKOV I I, et al. 6-mW single-mode high-speed 1550-nm wafer-fused VCSELs for DWDM application[J]. IEEE Journal of Quantum Electronics, 2017, 53(6): 2400808.